
1

Fall 2006 6.831 UI Design and Implementation 1

Lecture 15: Undo

2

Fall 2006 6.831 UI Design and Implementation 2

UI Hall of Fame or Shame?

Suggested by Ryan Damico

Today’s candidate for the Hall of Shame is this entry form from the 1800Flowers web site. The

purpose of the form is to enter a message for a greeting card that will accompany a delivered flower

arrangement.

Let’s do a little heuristic evaluation of this form:

Major: The 210 character limit is well justified, but hard for a user to check. Suggest a dynamic %-

done bar showing how much of the quota you’ve used. (error prevention, flexibility & efficiency)

Major: special symbols like & is vague. What about asterisk and hyphen – are those special too?

What am I allowed to use, exactly? Suggest highlighting illegal characters, or beeping and not

allowing them to be inserted. (error prevention)

Cosmetic: the underscores in the Greeting Type drop-down menu look like technical identifiers,

and some even look mispelled because they’ve omitted other punctuation. Bosss_Day? (Heuristic:

match the real world)

Major: how does Greeting Type affect card? (visibility, help & documentation)

Cosmetic: the To:, Message,: and From: captions are not likely to align with what the user types

(aesthetic & minimalist design)

3

Fall 2006 6.831 UI Design and Implementation 3

Today’s Topics

• Undo design principles

• History visualization

• Selective undo

• Command objects

Today’s lecture concerns the design and implementation of undo mechanisms. Provision of undo is a

crucial part of usability. Easy reversibility is a key principle of direct manipulation. It encourages

exploration and experimentation, which are vital to the user’s learning process. It makes inevitable

errors less costly, and gives users a sense of safety and control. So undo is clearly very important to

user interfaces. But undo isn’t necessarily trivial to design, and it’s challenging to implement as

well.

4

Fall 2006 6.831 UI Design and Implementation 4

Forming a Mental Model of Undo

• Undo reverses the effect of an action

• But that leaves many questions:
–What stream of actions will be undone?

–How is the stream divided into undoable
units?

–Which actions are undoable, and which are
skipped?

–How much of the previous state is actually
recovered by the undo?

–How far back in the stream can you undo?

You may think it’s obvious what the Undo command does: it reverses the effect of the user’s last

action. But it’s not as simple as that. Undo’s behavior can be mysterious. Undo is an example of a

case where the system model is not well communicated by the user interface. The actions managed

by Undo are not visible; there’s no persistent, visual representation showing the next action to be

undone. (Not quite true: in well-designed interfaces, the Undo menu command’s label gives a hint,

like “Undo Typing” or “Undo Bold”. But it’s not prominent, so it doesn’t particularly help a user

form their mental model from ordinary use.) If you ask users to predict what effect Undo will have

in some particular case, they may have no idea.

Let’s look at some of the questions we should ask when we’re designing an undo mechanism.

5

Fall 2006 6.831 UI Design and Implementation 5

What stream of actions will be undone?

• Actions in this window (MS Office)

• Actions in this text widget (web browser)

• Just my actions, or everybody’s
(multiuser apps)

• Actions made by the computer

–MS Office AutoCorrect and AutoFormat are

undoable, even though user didn’t do them

Undo reverses the last action made by the user, but it’s not necessarily the last one in the global

stream. There is no global Undo in current GUI environments. Each application, sometimes even

each widget, offers its own Undo command. A particular Undo command will only affect the action

stream of the application or widget that it controls – so it will undo the last action in that application

or widget’s stream, which isn’t necessarily the last command the user issued to the system as a

whole.

Some applications use a separate action stream for each window. Microsoft Office works this way,

for example. If you type something into Word document A, then type something else into Word

document B, then switch back to A and invoke Undo, then A’s insert will be undone – even though

B’s insert is the last one you actually performed.

Other applications treat each text widget as a separate action stream. Web browsers behave this way.

Try visiting a form in a web browser, and type something into two different fields. You’ll find that

Undo only affects the field with the current keyboard focus, ignoring actions you made on any other

fields. Changes made in other kinds of form widgets – drop-down menus or listboxes, for example –

aren’t added to any action stream.

Applications with multiple simultaneous users – such as a shared network whiteboard, where

anybody can scribble on it – face the question of whether Undo should affect only your own actions,

or everybody’s actions. Usually, the best answer to this question is only your own actions, unless

you have some kind of floor control mechanism that prevents people from working simultaneously

[Abowd & Dix, “Giving undo attention,” Interacting with Computers, v4 n3, 1992].

6

Fall 2006 6.831 UI Design and Implementation 6

How is the stream divided into units?

• Lexical level
– Mouse clicks, key presses, mouse moves

– Nobody does it at this level

• Syntactic level
– Commands and button presses

• Semantic level
– Changes to application data structures (e.g., the result of an

entire Format dialog)

– This is the normal level

• Text entry is aggregated into a single action
– But other editing commands (like Backspace) and newlines

interrupt the aggregation

• What about user-defined macros?
– Undo macro actions individually, or as a unit?

Once you’ve decided which stream of actions to undo, the next question is, how is the stream divided

into units? This is important because Undo reverses the last unit action of the stream.

Dividing at the lexical level means low-level input events, so Undo might reverse the very last

keyboard or mouse change. For example, if you just did a drag-and-drop, invoking Undo might

undo your mouse button release, putting you back into drag-and-drop mode and allowing you to drop

somewhere else. No user interface (that I know of) implements lexical Undo in a systematic way;

it’s not clear how to get it right (since you’re not holding the button down anymore!), and it’s

probably not what users want.

At the syntactic level, you would undo commands or onscreen button presses. For menu items and

toolbar buttons, this is the right thing. But if you just finished a dialog – say, using the Font dialog,

or selecting a Color – then this would undo the OK button press, returning you into the dialog box.

Most applications don’t do it at this level either.

The semantic level is what most designers choose, where Undo reverses the most recent change to

the backend model – whether it was caused by a simple command, like Boldface, or a complicated

dialog, like Page Layout. That’s great for one kind of user control and freedom, since it makes

complex changes just as easy to back out of as simple changes. But what if you just completed a

long wizard dialog, only to discover that it didn’t do what you wanted, and you have to redo it

completely?

For undoing text, individual typed characters should be aggregated somehow – otherwise, Undo

won’t be any faster than pressing Backspace. One natural way to do this might be word boundaries;

but most text editors use edit commands and newlines as boundaries.

In general, the action stream should be divided into chunks from the user’s perspective. For

example, a user-defined macro is a chunk, so Undo should treat the entire macro as a unit action.

7

Fall 2006 6.831 UI Design and Implementation 7

Which actions are undoable?

• User’s action stream may include many
actions that are ignored by Undo
– Selection
– Keyboard focus
– Changing viewpoint (scrolling, zooming)
– Changing layout (opening palettes or sidebars,

adjusting window sizes)
– UI customization (adding buttons to toolbars)

• So which actions does Undo actually undo?
– Some applications (e.g. web browsers, IDEs) have

Undo/Redo for the editing stream, Back/Forward
for the viewpoint stream

Many actions that affect visible program state may be completely ignored by Undo. Typically these

actions affect the view, but don’t actually change the backend model. Examples include selection,

keyboard focus, scrolling and zooming, window management, and user interface customizations.

Since easy reversibility can be just as helpful for view changes, some applications define new

commands for them, so they can reserve Undo for reversing model changes. Web browsers are a

fine example: the Back button reverses a jump in view (whether caused by loading a new page or

clicking on an internal hyperlink to jump to another place in the same page). Development

environments like Eclipse have borrowed this idiom for navigation in code editors; you can press

Back to undo window switching and scrolling.

8

Fall 2006 6.831 UI Design and Implementation 8

How much state is recovered?

• Select text, delete it, and then undo

–Text is restored

–But is selection restored? Cursor position?

Even if the Undo stream doesn’t include all the view changes you make, how much of the view state

will be restored when it reverses a model change? When you undo a text edit, for example, will the

selection highlight be restored as well? Will the text cursor be put back where it was before the edit?

If the text scrolls, will it be scrolled back to the same place?

9

Fall 2006 6.831 UI Design and Implementation 9

How far back can you undo?

• Often a limit on history size

–Used to be one action -- now usually

hundreds, or infinite

• Does action stream persist across
application sessions?

– If so, stream must be saved to file

• Does it persist across File/Save?

–Not in MS Office

Finally, how far back will the undo history stream go? Old Macintosh applications had only single

undo – i.e., you could only undo the last action, and no farther. Thankfully, cheap memory has made

deep undo history feasible and commonplace.

Even though memory no longer limits undo, the conventional model of undo still does. In most

applications, Undo is a transient phenomenon, limited to a single application session. If you shut

down the application, and then restart it, the undo history is erased. So you can’t undo past the start

of the current session.

Some applications even erase the undo history as soon as the user saves a document to disk.

(Microsoft Office does this.) Presumably the reason is consistency – i.e., after you save, the model

should be in the same state that it would be if you closed the application and restarted it – but it poses

a serious cost on users who habitually save frequently.

10

Fall 2006 6.831 UI Design and Implementation 10

Design Principles for Undo

• Visibility
– Make sure undone effects are visible

• e.g., scrolled into view, selected, possibly animated

• Aggregation
– Units should be “chunks” of action stream: typed strings, dialogs, macros

• Reversibility of the Undo itself
– Support Redo as well as Undo

– Undo to a state where user can immediately reissue the undone command,
or a variant on it
• e.g., restore selection & cursor position

• Reserve it for model changes, not view changes
– For consistency with other applications, reserve Undo for changes to

backend data

• “Undo” is not the only way to support reversibility
– Backspace undoes typing, Back undoes browsing, Recent Files undoes file

closing, scrolling back undoes scrolling

– Forward error recovery: using new actions to fix errors

The upshot of all these questions is that it’s very hard for users to predict what Undo will do. Faced

with this unpredictability, a common strategy is to press Undo until you see the effect you want to

reverse actually go away, or until you realize it’s gone too far without solving the problem (i.e., it’s

reversed an older, still-desired effect). So visibility of Undo’s effects is a critical part of making it

usable. Whenever Undo undoes a command, it should make sure that the effects of that have a

visible change on the screen. If the user has changed the viewpoint (e.g. scrolling) since doing the

command that is now being undone, the viewpoint should be changed back, so that it’s easy to see

what was reversed.

The unit actions should correspond to chunks of the user’s interaction: whole typed words (or

strings), complete dialogs, user-defined macros.

Undo itself should be reversible, so that if you overshoot, you can come back. That’s what the Redo

command is for. Another way to reverse an Undo is to manually issue the undone command again; a

good undo mechanism should set up the conditions for this as well. For example, suppose you select

a range of text and Delete it, and then Undo that deletion. The editor should not only restore the text,

but also restore the selection highlight, so that you can immediately press Delete to delete the same

text again.

For consistency, reserve the Undo command for model changes. You can use other commands for

view changes. Keep in mind that you don’t necessarily need a command named “Undo” to support

reversibility. There are other commands that move through other action streams (Back), and physical

manipulations (like scrollbar dragging) support direct reversibility.

Users may not even think of reaching for Undo if the rest of your interface makes it easy to reverse

undesired changes. Undo is a form of backward error recovery, which fixes errors by going back

in time. A more natural way of thinking is forward error recovery – using other commands to

reverse the change. For example, to undo a Bold command by forward error recovery, you select the

text again and toggle Bold off. If your interface supports forward error recovery as much as possible,

then warts in the Undo model won’t hurt as much.

11

Fall 2006 6.831 UI Design and Implementation 11

Visualizing the History

• Use Undo/Redo to browse history and

view resulting application state

–Not ideal, since user is making changes to

model just to view the history

• Direct visual representation

web browser history graphical history

The biggest usability problem with Undo is that the user can’t directly see the history that they’re

browsing through. That’s what makes it harder to learn and understand the model behind Undo.

In practice, most applications only visualize the undo history implicitly – i.e., the user can press

Undo and Redo to browse back and forth through the history, viewing the resulting states of the

entire application or document. That’s hardly ideal.

Some applications use direct visualizations of history to good effect. For example, a web browser

displays the history of pages visited (here, the Back button is acting as an undo command for

hyperlink browsing). The browser history is concise, has user-sensible labels (page titles, not

URLs), and enables direct selection (clicking on a history item to jump to it).

One research system, a drawing editor, experimented with graphical history – cartoon-strip

visualizations of the effects of each command in the history on the actual document, zoomed in

tightly to show just enough context (image from Kurlander & Feiner, “A history-based macro by

example system”, UIST ’92).

12

Fall 2006 6.831 UI Design and Implementation 12

Undo and Redo Lists

• History list is a script of commands

that generates the current model state

• Undo & Redo edit the script

–Undo removes last action from history list

and puts it on redo list

–Redo adds back one action from redo list

–Undo & Redo are not put in either list
History list Redo list

Current state

In many applications, the undo history can be formally regarded as a script of commands, with the

invariant that the current state of the model is equivalent to the state that would be generated by

running the script against the initial model state (e.g., the state of the file on disk). This model

explains why applications like Microsoft Office choose to clear the undo history whenever you save

the file.

In this model, the Undo and Redo commands are not ordinary commands that are added to this script,

but rather metacommands that edit the history. Undo removes the last command on the history list

(and puts it at the start of a redo list). Redo puts the first command on the redo list back on the

history list. In order to preserve the invariant, the current state of the model is changed likewise

whenever the history list is changed. But the Undo and Redo commands issued by the user are not

added to the history.

13

Fall 2006 6.831 UI Design and Implementation 13

Adding New Commands to History

• New command is added to history list

–And clears the redo list (in most apps)

• Or new command may branch history

History list Redo list

New command

History list Redo list

New command

Invoking a new command usually clears the redo list. This is the safest approach, because the new

command may destroy preconditions of commands sitting on the redo list. (For example, what if a

command on the redo list changed the color of a certain circle, but the new command deleted that

circle? What would redoing that command mean?)

Some research systems have experimented with a history tree, in which invoking a new command

creates a new branch, keeping the redo list as the other branch. If the user ever backs up to that

branch again in the history, the Redo command would offer a choice going forward again. Some

research web browsers have adopted a similar perspective on the page history, building a tree of

browsing. In practice, these models are too complicated to understand without history visualization,

and even then it’s not clear that they’re valuable enough to be worth the complication.

14

Fall 2006 6.831 UI Design and Implementation 14

Removing Commands from History

(Selective Undo)

• Selective undo = deleting any action from the history
list, not necessarily the last

• Selective redo = redoing any action in redo list, not
necessarily the first

• Need to visualize history to choose action to undo

• Essential for multiuser applications

• Watch out for command interdependencies

Create

rectangle #5

Distribute all

rectangles horizontally

Delete text
start=10,len=10

Delete text
start=0,len=5

Another advanced feature is selective undo, which allows the user to reach back and remove the

effect of any action in the history, not necessarily the last action (or conversely, reach forward to any

action in the redo list and apply it). Making selective undo available to the user requires some

visualization of the history; otherwise users won’t be able to indicate which action should be

selectively undone. But multiuser applications (where users can make simultaneous changes to the

same model) basically have to implement selective undo in order to support a local, per-user undo

model. The application must reach back and undo this user’s last action, regardless of how many

changes were made by other users in the interim.

The tricky part of implementing selective undo is dependencies between commands in the history.

Some examples are shown here. What happens if you selectively undo the create-rectangle action?

Presumably rectangle #5 disappears -- but later in the history, the rectangle participated in an

alignment operation. Do the other rectangles stay where they are, or do they behave as if the original

rectangle never existed, redistributing themselves equally again? A script model of undo would

dictate the latter, because of the invariant that the current state should match the result of running all

the commands in the history. But a simpler model of selective undo would simply delete the

rectangle (Berlage, “A Selective Undo Mechanism for Graphical User Interfaces Based on

Command Objects”, TOCHI, v1 n3, September 1994), or perhaps forbid the create-rectangle to be

selectively undone.

Similarly, the representations used for commands may interfere with selective undo. Suppose the

actions on a text editor’s undo history are described by absolute offsets (from the start of the text).

Then if you selectively undo an old action, it may corrupt the coordinates of all subsequent actions in

the history. This problem can be solved by choosing a different representation (e.g., invisible

markers in the text), or by implementing commutativity rules which specify how to fix up the

subsequent actions in the history.

15

Fall 2006 6.831 UI Design and Implementation 15

Undo Implementation

• History is a list of command objects
– with undo() and redo() methods

• Command object must store enough data to
implement undo and redo
– Partial checkpoint of prior state
• Move circle from (0,0) to (100,100)
• Change text from Times to Arial

– Object references vs. location descriptions
• Insert “hello” at char position 33

vs. Insert “hello” at marker #502934

– Relative difference vs. absolute before & after
values
• Move circle from (90,120) to (100, 100)

vs. Move circle by (10,-20)

Our discussion of Undo has worked its way down from the user interface to an abstract

implementation model (the script model). Now let’s talk about some implementation details.

The undo history is usually represented as a list of objects, often called command objects, each

representing a state change. These objects have undo() and redo() methods, which are called

whenever the user invokes Undo or Redo to move the command objects back and forth between the

history list and the redo list.

The command object must store enough information about the prior and final states of the model to

implement undo and redo. In the worst case, this might have to be a full checkpoint of the model

(e.g., in a paint program when a global filter like bluring or sharpening is applied, the command

object for that filter might have to store all of the pixels in the image prior to the filter application.)

More commonly, though, it’s just a reference to part of the model, the prior value of that part, and the

final value after the command was issued.

As we discussed on the previous slide, using of absolute location descriptions, like character

positions in text, can affect the commutativity of commands, and make selective undo difficult or

impossible.

An implementor might try to save space by storing only a delta between the before and after states.

For example, a move command object might store the vector that was moved, rather than the position

before and the position after. If the application supports selective undo and redo, then this decision

might be noticeable to the user.

16

Fall 2006 6.831 UI Design and Implementation 16

Swing Undo Architecture

UndoableEdit

undo()
redo()

CompoundEdit

addEdit(UndoableEdit)

StateEdit

UndoManager

UndoableEditListener
editHappened(UndoableEditEvent)

Document

JTextComponent

listeners

model

*

Java Swing includes a framework for managing undo in the javax.swing.undo package. In this

framework, a command object implements the interface UndoableEdit, whose primary concern is

providing the undo() and redo() methods. Two implementations of UndoableEdit are provided by

the framework. StateEdit is a generic command object that uses a hashtable to store the prior state

and final state of a model object (the model object is responsible for saving and restoring itself from

this hashtable). CompoundEdit uses the composite pattern – it’s a command object that contains

other command objects, allowing them to be undone or redone as a unit. CompoundEdit thus

supports aggregation of low-level commands into high-level chunks, like runs of typed text, dialog

boxes, or user-defined macros.

The undo history for an application (or a window, or a single widget) is represented by an

UndoManager, which is a CompoundEdit because it consists of a sequence of command objects.

(But CompoundEdit.undo() undoes all its constituent command objects at once;

UndoManager.undo() undoes them one at a time.)

The undo history implements a listener, UndoableEditListener, that receives events from a backend

model. Currently, the only model in Swing that generates these events is the text document model,

which is embedded inside JTextFields, JTextAreas, and JEditorPanes. But you can certainly

implement your own.

17

Fall 2006 6.831 UI Design and Implementation 17

Implementation Challenges

• Global changes may need to save a lot of prior state
– e.g. whole-image operations in an image editor

• Redo of object creation must produce references
usable by subsequent modification/deletion actions
– 1: Create circle #5023 center (10,10) radius 20

– 2: Change color circle #5023 from black to white

– Undo 1 & 2, then redo 1

– Redo must restore the original circle so that action 2 still
refers to it

• Object references on history list prevent garbage
collection of deleted objects
– generally handled by limited history length

