
1

Fall 2006 6.831 UI Design and Implementation 1

Lecture 11: Output 2

2

Fall 2006 6.831 UI Design and Implementation 2

UI Hall of Fame or Shame?

Here’s our hall of fame example. StatCounter is a web site that tracks usage statistics of your web

site, using a hit counter. This is a sample of its statistics page, which shows you how many visitors

your site had over a certain period of time.

The first thing to note is the simplicity of the design. Only a few colors are used: mainly a few

shades of blue, plus gray and black. This simplicity allows the few unique colors – like the red TIP,

and the colored tool icons – to really stand out. The design also omits unnecessary labels – for

example, the date entry boxes on the bottom don’t need labels like “From:” and “To:”, because

they’re self-describing.

It’s interesting to look at how visual variables were used to encode the information. Position is used

to represent date (horizontally) and number of hits (vertically). The kind of statistic is encoded in the

value of the graph line, ranging from dark blue (returning visitors) to light blue (page loads). The

statistics are actually related in a subset hierarchy: since every returning visitor is a unique visitor,

and every unique visitor causes at least one page load, it is always the case that page loads > unique

visitors > returning visitors. This hierarchy is emphasized both by position (the curves are always in

the same order vertically) and by value. Position and value were good choices for emphasizing the

ordering, because both variables are ordered. An unordered visual variable, like the shape of the data

point, might not have been as effective.

This page does have some problems. One is the use of two different terms, “range” and “period”,

which basically mean the same thing (internal consistency). The Set Period interface is in fact a list

of common shortcuts, like “the last 30 days”, which is a good thing; but the shortcuts should be

presented more prominently. There’s no reason why the year field (2004) should be a text box, rather

than a drop-down with choices appropriate to the actual range of data available (error prevention).

And the hyphen between the start date and the end date is too small to have good contrast with the

controls around it; it disappears.

3

Fall 2006 6.831 UI Design and Implementation 3

Today’s Topics

• Alpha compositing

• Transforms

• Clipping

• Painting tricks

4

Fall 2006 6.831 UI Design and Implementation 4

Transparency

• Alpha is a pixel’s transparency

– from 0.0 (transparent) to 1.0 (opaque)

–32-bit RGBA pixels: each pixel has red,

green, blue, and alpha values

• Uses for alpha

–Antialiasing

–Nonrectangular images

–Translucent components

In many graphics toolkits, the pixel model includes a fourth channel in addition to red, green, and

blue: the pixel’s alpha value, which represents its degree of transparency.

5

Fall 2006 6.831 UI Design and Implementation 5

Antialiasing

Simple Antialiased

Recall that antialiasing is a way to make an edge look smoother. Instead of making a binary

decision between whether to draw a pixel near the edge completely (opaque) or not at all

(transparent), antialiasing uses an alpha value that varies from 0 to 1 depending on how much of the

pixel is covered by the edge. The alpha value causes a blending between the background color and

the drawn color. The overall effect is a fuzzier but smoother edge.

6

Fall 2006 6.831 UI Design and Implementation 6

Alpha Compositing

• Compositing rules control how source

and destination pixels are combined

• Source

– Image

–Stroke drawing calls

• Destination

–Drawing surface

When pixels include alpha values, drawing gets more interesting. When you draw on a drawing

surface – whether it’s using stroke calls such as drawRect(), or pixel copying like drawImage(), there

are several ways that the alpha values of your drawing calls can interact with the alpha of the

destination surface. This process is called alpha compositing.

Let’s set up the situation. We have a rectangle of source pixels, which may be an image, or may be

the pixels produced by some drawing call. We also have a rectangle of destination pixels, which is

the drawing surface you want to modify. Alpha compositing determines what the resulting

destination pixels will be after the source drawing is applied.

7

Fall 2006 6.831 UI Design and Implementation 7

Porter-Duff Alpha Compositing Rules

Source pixel [Rs Gs Bs As]

Destination pixel [Rd Gd Bd Ad]

1. Premultiply RGB by A
[RGB]s = [RGB]sAs

[RGB]d = [RGB]dAd

2. Compute weighted combination of source and
destination pixel

[RGBA]d = [RGBA]sfs + [RGBA]dfd
for weights fs, fd determined by the compositing rule

3. Postdivide RGB by A
[RGB]d = [RGB]d / Ad unless Ad == 0

The compositing rules used by graphics toolkits were specified by Porter & Duff in a landmark paper

(Porter & Duff, “Compositing Digital Images”, Computer Graphics v18 n3, July 1984). Their rules

constitute an algebra of a few simple binary operators between the two images: over, in, out, atop,

and xor. Altogether, there are 12 different operations, each using a different weighted combination

of corresponding source pixel and destination pixel, where the weights are determined by alpha

values.

The presentation of the rules is simplified if we assume that each pixel’s RGB value is premultiplied

by its alpha value. For opaque pixels (A=1), this has no effect; for transparent pixels (A=0), this sets

the RGB value to 0.

After the composition, the multiplication by alpha is undone by dividing each RGB value by the

(final) alpha value of the pixel. If we were going to do a sequence of compositing operations,

however, we might skip this step, deferring the division until the final composition is completed.

(Java gives you an option, when you create an offscreen image buffer, whether you want the RGB

values to be stored premultiplied by alpha; this representation will allow faster compositing.)

8

Fall 2006 6.831 UI Design and Implementation 8

Simple Copying

clear fs=0, fd=0

[RGBA]d = 0

src fs=1, fd=0

[RGBA]d = [RGBA]s

dst fs=0, fd=1

[RGBA]d = [RGBA]d

Here are the three simplest rules. They’re not particularly useful in practice, but they’re included to

make the algebra complete.

clear combines the source and destination pixels with zero weights, so the effect is to fill the

destination with transparent pixels. (The transparent pixels happen to be black, i.e. RGB=0, but the

color of a transparent pixel is irrelevant.)

src replaces the destination image with the source image.

dst completely ignores the source image, and leaves the destination unchanged.

9

Fall 2006 6.831 UI Design and Implementation 9

Layering

src over dst fs=1, fd=1-As

[RGBA]d =

[RGBA]s + [RGBA]d(1-As)

dst over src fs=1-Ad, fd=1

[RGBA]d =

[RGBA]d + [RGBA]s(1-Ad)

The next two rules produce layering effects.

src over dst produces the effect of drawing the source pixels on top of the destination pixels.

Wherever the source is opaque (As=1), the existing destination pixel is completely ignored; and

wherever the source is transparent (As=0), only the destination pixel shows through. (Note that

RGBs=0 when As=0, because we have premultiplied by alpha). If the source is translucent (0 < As <

1), then the final pixel is a mix of the source and destination pixel.

dst over src produces the opposite effect – putting the source image behind the destination image.

This is one way to affect drawing Z-order without having to change the actual order in which

drawing calls are made. Be careful, though – in order for dst over src to succeed in a useful way, the

destination image buffer must actually have an alpha channel, and it can’t have been already been

filled with opaque pixels. A typical drawing surface in Java (the Graphics object passed to your

paintComponent() method) has already been filled with an opaque background, so you won’t see any

of your source drawing if you use dst over src.

10

Fall 2006 6.831 UI Design and Implementation 10

Masking

src in dst

[RGBA]d = [RGBA]sAd

dst in src

[RGBA]d = [RGBA]dAs

src out dst

[RGBA]d = [RGBA]s(1-Ad)

dst out src

[RGBA]d = [RGBA]d(1-As)

The next set of rules are for masking. Masking is like clipping – it restricts drawing to a certain

area. But where clipping uses a shape (such as a rectangle) to describe the area, masking uses a pixel

array. In older graphics systems, this pixel array was simply a bitmap: 1s for pixels that should be

drawn, 0s for pixels that shouldn’t be drawn. But with alpha compositing, the alpha channel

represents the mask, a value ranging from 0.0 to 1.0 depending on how much of a pixel should be

drawn.

Notice that these masking use the RGB values from only one of the images (source or destination).

The other image is used only for its alpha channel; its RGB values are ignored.

Here are some of the applications for masking:

- generating the drop shadow of a nonrectangular image (src is an image, dst is just filled gray – dst

in src)

- pattern or texture filling (src is a pattern, like tiled images, dst is a filled or stroked shape – src in

dst)

- clipping where the clip region should have antialiased borders (src is drawing calls, dst is filled clip

region shape with antialiased borders, src in dst)

11

Fall 2006 6.831 UI Design and Implementation 11

Other Masking

src atop dst
[RGBA]d =

[RGBA]sAd + [RGBA]d(1-As)

dst atop src
[RGBA]d =

[RGBA]s(1-Ad) + [RGBA]dAs

src xor dst
[RGBA]d =

[RGBA]s(1-Ad) + [RGBA]d(1-As)

These are the last three rules. src atop dst is like src over dst, but it omits any source pixels where

the destination is transparent. And src xor dst omits any pixels where both the source and the

destination are nontransparent.

atop and xor aren’t terribly useful in practice; earlier versions of Java actually omitted them, but

they’re present in Java 1.5.

12

Fall 2006 6.831 UI Design and Implementation 12

Coordinate Transforms

• Translation
–moves origin by dx, dy

• Scaling
–multiplies coordinates

by sx, sy

• Rotation
– rotates by θ around

origin 6

6

Coordinate systems are relevant to all output models. In the component model, every component in a view
hierarchy has its own local coordinate system, whose origin is generally at the top left corner of the
component, with the y axis increasing down the screen. (Postscript is an exception to this rule; its origin is the
bottom left, like conventional Cartesian coordinates.)

When you’re drawing a component, you start with the component’s local coordinate system. But you can
change this coordinate system (a property of the graphics context) using three transformations:

Translation moves the origin, effectively adding (dx,dy) to every coordinate used in subsequent drawing.

Scaling shrinks or stretches the axes, effectively multiplying subsequent x coordinates by a scaling factor sx
and subsequent y coordinates by sy.

Rotation rotates the coordinate system around the origin.

13

Fall 2006 6.831 UI Design and Implementation 13

Matrix Representation

• Normally points in 2D are represented

by a two-element vector [x,y]

• Transformations are 2x2 matrices

• But translation can’t be represented this
way

x
y

sx 0
0 sy

sxx
syy

=
x
y

cosθ sinθ
-sinθ cosθ

Scaling
Rotation

These operations are typically represented internally by a transform matrix which can be multiplied by a

coordinate vector [x,y] to map it back to the original coordinate system. Scaling and rotation are easy to

represent by matrix multiplication, but translation seems harder, since it involves vector addition, not

multiplication.

14

Fall 2006 6.831 UI Design and Implementation 14

Homogeneous Transforms

• We can represent all three transforms

as matrices if points are three-element

vectors [x,y,1]

1 0 dx

0 1 dy

0 0 1

x
y

1

=
x+dx

y+dy

1

Translation

sx 0 0
0 sy 0

0 0 1

x

y
1

=
sxx

syy
1

Scaling
cosθ sinθ 0
-sinθ cosθ 0

0 0 1

x

y
1

Rotation

Homogeneous transforms offer a way around this problem, allowing translations to be represented

homogeneously with the other transforms, so that the effect of a sequence of coordinate transforms can be

multiplied together into a single matrix. Homogeneous transforms add a dummy element 1 to each coordinate

vector.

15

Fall 2006 6.831 UI Design and Implementation 15

Common Mistakes in Using Transforms

• Transforms affect later drawing, not the

current contents of the drawing surface
drawImage(“bunny.jpg”)

scale(2, 2)

• Transforms are not commutative
translate(50,50) scale(2,2)

scale(2, 2) translate(25,25)

One misconception in using transforms is that they apply to what you’ve already put on the drawing

surface – as if you were doing a rotate, scale, or move operation in a drawing program. That’s not

the way it works. Transforms change the coordinate system for subsequent drawing calls. In the

example shown here, the bunny already drawn won’t be affected by the later scale() call.

Another misconception is that you can freely reorder transforms – e.g., that you can gather up all the

translates, scales, and rotates you’ll have to do, and do them in a single place at the beginning of your

paint() method. In general, that doesn’t work, because transform operations are not commutative.

Transforms of the same type are commutative, of course – two translates can be done in either order,

and in fact can trivially be combined into a single translate by adding their components. Likewise,

two scaling operations can be commuted (and combined by multiplying), and two rotations can be

commuted (or combined by adding the angles). But two operations of different types cannot be done

in any order, because the results change depending on the order.

16

Fall 2006 6.831 UI Design and Implementation 16

Combining Multiple Transforms

• Scaling around a point (ox,oy)

1. Move the point back to the origin

translate(-ox,-oy)

2. Scale relative to the new origin

scale(sx, sy)

3. Move the point back (using the new scale)

translate(ox/sx, oy/sy)

1 0 ox/sx

0 1 oy/sy

0 0 1

1 0 -ox

0 1 -oy

0 0 1

x
y

1

sx 0 0

0 sy 0

0 0 1

=
sx 0 -sxox+ox/sx

0 sy -syoy+oy/sy

0 0 1

x

y
1

Rotation around a point is similar: first make the point the origin, then rotate, and then move the

point back. Undoing the translate is harder, however, so Swing simplifies things by actually giving

you a rotate(theta,x,y) method that does all the work.

17

Fall 2006 6.831 UI Design and Implementation 17

Some Applications of Transforms

• Clock face

draw circle(0,0,2r,2r)

translate(r, r)

for i = 0 to 11 {

draw line (r-k, 0, r, 0)

rotate(2π/12)

}

Transforms can make a lot of drawing easier. For example, if you have to draw the same thing at

several places, just write one function that draws the thing at (0,0), and use translate() before each

call to the function to put (0,0) in the right place.

Here’s a similar example – rather than calculate where the ticks of a clock face should go, just use

rotation around the center of the clock face so that you can draw the same tick each time. The radius

of the clock face is r, and the length of each clock tick line is k.

18

Fall 2006 6.831 UI Design and Implementation 18

Some Applications of Transforms

• Standard Cartesian origin

translate(0, height)

scale(1, -1)

Another simple thing that’s sometimes useful is transforming to the more familiar Cartesian

coordinate system, in which the origin is the lower-left corner. Why do we have to scale() as well as

translate()?

19

Fall 2006 6.831 UI Design and Implementation 19

Some Applications of Transforms

• Drawing in inches rather than pixels

dpi = pixels per inch

scale(dpi, dpi)

One more simple example: if you want to draw in physical units, some toolkits enable you to find out

what the (approximate) resolution of the screen is, in pixels per inch, and you can set your scale to

that, so that you can draw a line by giving its coordinates in inches rather than pixels.

20

Fall 2006 6.831 UI Design and Implementation 20

Clipping

• Rectangular clipping regions
setClip(x,y,w,h)

drawString(“hello”)

• Stroke-based clipping
setClip(new Circle(x, y, w, h))

drawString(“hello”)

• Pixel-based clipping
drawImage(“bunny.jpg”)
setComposite(src in dst)

drawString(“hello”)

hello

hello

hello

Virtually every GUI toolkit supports rectangular clipping regions, because it’s an essential part of the

view hierarchy pattern – parents clip their children by default. Clipping is also used for damage

regions, as we saw in the previous Output lecture. The clipping region is also under your control, if

you want it to be – most graphics contexts allow you to set your own clipping region that will filter

your subsequent drawing calls. Often, however, the clipping region that you set does not override

the clipping region set by your parent or set by the damage region – instead, the final clipping region

used for drawing may be the intersection of the region you provide and the damage region. One

nice feature of rectangles is that the intersection of any number of rectangles is always a rectangle (or

the empty set), so the drawing package doesn’t have to worry about more complicated shapes.

Good drawing systems (like Java Swing, Postscript/PDF, and Apple Quartz) let you do

nonrectangular clipping, which comes in two flavors. Stroke-based clipping uses an abstract shape

for clipping, which might be simple (like a circle) or complex. In Swing, you can build up a

complex shape by taking unions and intersections of simple shapes, or by defining its boundary using

line segments and curves.

The other approach uses the pixel model and alpha compositing. The clipping region is an image,

which is composited with a drawing using the in compositing operator we saw earlier in this lecture.

21

Fall 2006 6.831 UI Design and Implementation 21

Component Model Effects

• Changing Graphics passed to children

– Transforms: rotation, zooming

– Clipping: setting new clipping regions

• Wrapping Graphics passed to children

– Intercept child calls and modify or capture them

• Painting onto offscreen images and then

transforming the images

– Blur, shimmer, masking

• Using components as rubber stamps

– Table, list, and tree cell renderers

Using visual effects in the component model has some special problems, especially if you want your
container to be decoupled from its component children – i.e., if you want it to handle arbitrary
children who might draw themselves in arbitrary ways. Here are some tricks you can use to change
the way your children draw themselves. (Some of these ideas come from a good paper: Edwards et
al, “Systematic Output Modification in a 2D User Interface Toolkit”, UIST ’97.)

One technique is to change the defaults in the graphics context you pass down to your children. For
example, you can apply transformations to the graphics context to persuade your children to draw in
different places, or magnify or shrink their results. One problem with these kinds of transformations
is that they can screw up input and automatic redraw. If a component is drawn transformed, you
have to transform hit testing and input event coordinates in the same way; similarly, if the component
asks to repaint itself, its repaint rectangle has to be transformed likewise. So if your toolkit doesn’t
support transforming input and redraw, you should restrict the use of this technique to components
that don’t expect input and that will notify you if they change.

Another trick is to put a wrapper around the Graphics object – a wrapper that delegates to the inner
Graphics object, but changes the way certain kinds of drawing is done. For example, you could write
a Graphics wrapper that produces a drop shadow underneath every stroke drawn by a child.

You can also create an offscreen image buffer, create a graphics context that uses it as a drawing
surface, and then have your children paint themselves through this new graphics context. This gives
you complete access to the pixel image produced by your children, so you can apply arbitrary effects
to it. For example, you can create a drop shadow from the entire image, using masking; you can
apply a Gaussian filter to it to blur the sharp edges; you can animate a shimmering effect. The result
of these operations then gets copied to the onscreen drawing surface.

The final component-model technique is concerned not with components as children, but rather
components as encapsulated drawing procedures – rubber stamps that, given some parameters, can
paint a rendering of those parameters. For example, you can create a label widget, fill in its text,
font, x, y, and size, and call its paint() method to paint it on an arbitrary graphics context, even
though you never added it to a view hierarchy. Several Swing classes use this approach – JList,
JTable, and JTree for example. These classes can be configured with renderers which are simply
component factories, but the components are used only for stamping out output. This approach is
even lighter-weight than the glyph pattern. You might need only one JLabel to stamp out all the text
in a column, for example.

22

Fall 2006 6.831 UI Design and Implementation 22

Scene Graphs

• Traditional 2D toolkits are limited in many ways
– View hierarchy is a tree (can’t share views)

– Parents must enclose descendents (and clip them)

– Parents translate children, but don’t otherwise transform
them

• Piccolo toolkit (designed for zooming user interfaces)
– View hierarchy is actually a graph, not merely a tree

– Components can translate, rotate, scale their children

– Parents transform but don’t clip their children by default

– Input events and repaint requests are transformed too

Finally, let’s look at Piccolo, a novel UI toolkit developed at University of Maryland. Piccolo is specially

designed for building zoomable interfaces, which use smooth animated panning and zooming around a large

space.

Piccolo has a view hierarchy consisting of PNode objects. But the hierarchy is not merely a tree, but in fact a

graph: you can install camera objects in the hierarchy which act as viewports to other parts of the hierarchy,

so a component may be seen in more than one place on the screen. Another distinction between Piccolo and

other toolkits is that every component has an arbitrary transform relative to its parent’s coordinate system – not

just translation (which all toolkits provide), but also rotation and scaling. The toolkit automatically handles

transforming not only output, but also input event coordinates, hit tests, and repaint requests.

Furthermore, in Piccolo, parents do not clip their children by default. If you want this behavior, you have to

request it by inserting a special clipping object (a component) into the hierarchy. As a result, components in

Piccolo have two bounding boxes – the bounding box of the node itself (getBounds()), and the bounding box

of the node’s entire subtree (getFullBounds()).

The widget set for Piccolo is fairly small by comparison with toolkits like Swing and .NET, probably because

Piccolo is a research project with limited resources. It’s worth noting, however, that Piccolo provides reusable

components for shapes (e.g. lines, rectangles, ellipses, etc), which in other toolkits would require revering to

the stroke model.

Piccolo home page: http://www.cs.umd.edu/hcil/piccolo/

Overview: http://www.cs.umd.edu/hcil/piccolo/learn/patterns.shtml

API documentation: http://www.cs.umd.edu/hcil/jazz/learn/piccolo/doc-1.1/api/

