

Page 1 of 12

6.831 User Interface Design & Implementation
Fall 2006

Quiz 2

This quiz is closed book, closed notes. You have 80 minutes to complete it. Each

question has enough space for a complete, concise answer, but an additional blank page is

included at the end if you find it necessary to continue your answer.

Your name: ___

Suppose you’re implementing a new kind of scrolling pane widget. Instead of displaying

a conventional scrollbar for moving around its child component, the widget should

display a miniature view of the entire child, with a 25% gray rectangle showing which

part of the child is currently visible. The example below shows how the scrolling widget

might look with a text widget as its child. The input to the miniature view is like a

scrollbar, so (for example) clicking and dragging the gray rectangle should behave the

same as clicking and dragging a scrollbar thumb.

`Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

"Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun
The frumious Bandersnatch!"

He took his vorpal sword in hand:
Long time the manxome foe he sought --

So rested he by the Tumtum tree,
And stood awhile in thought.

And, as in uffish thought he stood,
The Jabberwock, with eyes of flame,

Came whiffling through the tulgey wood,
And burbled as it came!

One, two! One, two! And through and through

The vorpal blade went snicker-snack!

He left it dead, and with its head
He went galumphing back.

"And, has thou slain the Jabberwock?
Come to my arms, my beamish boy!

O frabjous day! Callooh! Callay!"
He chortled in his joy.

All mimsy were the borogoves,

And the mome raths outgrabe.

"Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun

The frumious Bandersnatch!"

All the parts of the widget should be implemented as components, named as follows:

• MiniScrollPane: the entire widget itself

• Viewport: the part that shows the child component at normal size, on the left

• Track: the miniature view of the child component, on the right

• Thumb: the gray rectangle

• Child: the child component being scrolled (which happens to be a text editor in

the example above, but might be another component).

Page 2 of 12

1. Draw the component hierarchy showing all five components of the MiniScrollPane

widget.

MiniScrollPane -> Viewport -> Child

 -> Track -> Thumb

The child can’t be in two places in a component hierarchy – remember that the

component hierarchy is a tree. It should be a child of the viewport so that the viewport

clips it.

2. Write constraint equations that specify the vertical position and size of Thumb in

terms of the positions and sizes of the other components.

Thumb.y / Track.height = -Child.y / Child.height

Thumb.height / Track.height = Viewport.height / Child.height

Note that we use “-Child.y” because Child.y is relative to the coordinate system of its

parent, viewport. For example, if the child is scrolled down 100 pixels, that actually

means that its y position is -100.

3. Fill in the paintComponent methods for Track and Thumb below. (In Swing,

paintComponent() paints just the component itself; any children of the component are

automatically painted next.)

// references to other components

JComponent miniScrollPane, viewport, child, track, thumb;

class Track extends JComponent {

 public void paintComponent(Graphics g) {

 Graphics2D g2 = (Graphics2D) g;

 scale = track.height / child.height;

 g2.scale(scale, scale);

 child.paint(g);

 }

}

class Thumb extends JComponent {

 public void paintComponent(Graphics g) {

 Graphics2D g2 = (Graphics2D) g;

 g2.setColor(new Color(0, 0, 0, 0.25));

 g2.fillRect(0, 0, thumb.width, thumb.height);

 }

}

Page 3 of 12

4. List at least 3 different violations of graphic design rules in the user interface above.

No alignment between field captions.

Heavy use of dividing lines, rather than whitespace.

Crowding.

Poor contrast between field captions and field contents.

No margins inside buttons (the “…” buttons and the Next Tab buttons).

No margin around Mailto/CGI radio button panel.

The “…” buttons on the right group with each other (Gestalt similarity) rather than with

their fields.

5. Do a heuristic evaluation of the user interface above, finding at least 3 different

problems (which must be different from problems listed in the previous question).

Mailto, CGI , URL are technical terms (match the real world, minor)

“max length = 200 characters” puts the counting burden on the user (error prevention,

major)

Some captions end with colons, some do not (consistency, cosmetic)

Colors are represented as hex numbers, rather than color swatches (match the real

world, major)

Alternate field is enabled even though it shouldn’t apply (error prevention, major)

Page 4 of 12

6. Suppose you are developing a stock trading application, in which delays of seconds

can result in money lost. Thinking about the most important aspect of usability for

this problem, discuss the applicability of each evaluation method listed below.

Mention at least one limitation of each method that’s relevant to the application

you’re developing.

(a) Heuristic evaluation

Heuristic evaluation can find some efficiency problems (such as missing shortcuts or

obvious Fitts’s Law problems), but it can’t actually predict the efficiency of the

interface. For example, the expert may not have enough domain expertise to know

what the common operations are that need to be fast.

(b) Formative evaluation

Formative evaluation may not be good at finding efficiency problems, because the

users studied are typically not experts, and think-aloud (typically used in these

studies) tends to slow the user down.

(c) Predictive evaluation

Predictive evaluation, such as the keystroke level model or CPM-GOMS, is designed

for evaluating the efficiency of expert performance, which is what we want. Some

models are less accurate than others, however; for example, the keystroke-level

model doesn’t consider parallelism, and both models assume error-free performance.

Page 5 of 12

7. Suppose you’re redesigning the appearance of an important part of your interface, so

that the important part passes the squint test. Which visual variables will help, and

which ones won’t?

Selective variables will help pass the squint test: hue, value, position, size, orientation,

texture.

Nonselective variables won’t help: shape.

8. Discuss the usability of the color choices in the toolbar above.

Highly-saturated colors are tiring and distracting.

Too many colors make the buttons harder to scan.

Color-blind users might have trouble seeing the red-on-green arrows, or distinguishing

the green light in the traffic light.

9. Discuss the internationalization of the toolbar above.

Menu, Index, QUOTES, and Gr would have to be translated to a local language.

The number “11 1/8” may need to be reformatted.

Inbox, outbox, and filing cabinets are everyday objects that may look different in other

places.

Traffic light may also look different in other countries.

Page 6 of 12

10. Suppose you have the MIT logo (shown below on the left) loaded into an Image

object. The red and gray pixels are opaque, and the white background is transparent.

You want this logo in all blue letters instead, but still with a transparent background

(as shown on the right). Fill in the code below to make it happen. Some useful

methods are shown at the bottom of the page.

Original logo You want this

// Variables you can use

Image logo; // the MIT logo

int w = logo.getWidth();

int h = logo.getHeight();

// Create a new Image for the result.

// The blue logo should be in the result image at the end.

Image result = new BufferedImage(w, h);

Graphics2D g = (Graphics2D) result.getGraphics();

// Your code follows

 g.setColor(new Color(0,0,1.0,1.0))

 g.fillRect(0,0,w,h)

 g.setComposite(DST_IN_SRC)

 g.drawImage(logo, 0, 0);

}

// Useful Swing methods

g.drawImage(image, x, y)

g.setColor(new Color(r, g, b, a))

 where r,g,b,a are doubles in the range [0,1]

g.setComposite(rule)

 where rule can be SRC_OVER_DST, DST_OVER_SRC,

 SRC_IN_DST, DST_IN_SRC,

 SRC_OUT_DST, DST_OUT_SRC

g.fillRect(x,y,width,height)

Page 7 of 12

11. Make keystroke-level models of two methods for opening a file in a typical word

processor. Show your work by annotating each step with the specific action the user

takes. You don’t have to estimate the actual time for each method. Assume the user

has been typing prior to this method.

(a) Using only the mouse to choose volvo.doc from a Recent Files list at the bottom

of the File menu (like the one below).

H (home to mouse)

M (mental operation)

P (point at File menu)

K (click to open File menu)

M

P (point at volvo.doc)

K (click on volvo.doc)

total: 1H + 2M + 2P + 2K

(b) Using only the keyboard to invoke the Open File dialog box using a shortcut

(Ctrl-O or Command-O) and then typing volvo.doc explicitly.

M (mental)

K (Control or Command)

K (O)

M (mental)

9K (volvo.doc)

M (mental)

K (Enter)

total: 3M + 12K

Page 8 of 12

12. Here is part of a Java program intended to animate a rectangle:

// instance variables

int x, y, w, h; // current position of rectangle

// paint method

public void paint(Graphics g) {

 g.setColor(Color.RED);

 g.drawRect(x, y, w, h);

}

// animation method

public void animate(int newX, int newY) {

 int oldX = x, oldY = y;

 for (int i = 1; i <= 100; ++i) {

 Thread.sleep(10); // sleep for 10 msec

 x = (int) (oldX*(i/100.0) + newX*(1 - i/100.0));

 y = (int) (oldY*(i/100.0) + newY*(1 - i/100.0));

 paint(getGraphics());

 }

}

Suppose (x,y) is currently (0, 0). How will the program behave when it calls

animate(100, 100)? Consider both input and output behavior, and draw pictures of

the start, middle, and end of the animation to illustrate the output part of your answer.

Output: The program will leave the original rectangle at (0,0) without erasing it, and will

display a smear of rectangles from (100,100) back to (0,0).

Input: no user input events will be handled for the duration of the animation (1 second),

and then all the queued-up input events will be handled.

Page 9 of 12

13. List three different things you should say to a user before a formative evaluation.

We’re testing the interface, not you. Any problems you find are the system’s fault, not

yours.

You’re free to stop at any time.

You are being recorded on videotape (or audiotape).

Your results will be confidential.

Please think aloud.

14. Louis Reasoner has 10 boolean preferences to display on a Preferences dialog box

(preferences like Open Application Maximized and Save Automatically On Exit). He

says, “Let’s use a standard multiple-selection listbox containing all 10 choices.” Give

two reasons why his suggestion is a bad idea, and propose a better design.

Poor learnability: many users don’t know the Ctrl-click convention for toggling choices

on and off.

Poor error prevention: accidental clicking will clear all the preferences.

Inconsistent: use of a listbox suggests that the 10 preferences are related to each other,

when they’re not.

10 independent checkboxes would be a better design.

15. Consider this Javascript code that generates HTML:

 div.innerHTML = "Good " + (hourOfDay < 12 ? "morning" : (hourOfDay < 18 ?

"afternoon" : "evening")) + ", " + username + "!";

Aside from the fact that the string literals are English, what assumptions does this

code make that might need internationalization?

Greetings are dependent on the time of the day.

There are 3 periods in a day, divided at 12:00am, 12:00pm, and 6:00pm.

The greetings are composed of a prefix and a variable suffix.

Punctuation: comma and exclamation point.

“Good” might have to change its form to agree with the noun (e.g. in gender).

Ordering of greeting and user’s name might be different in different languages.

Page 10 of 12

16. In a certain toolkit, undoable edits implement an interface that has 3 methods:

 void doEdit();

 void undo();

 void redo();

Why are there both doEdit() and redo()? That is, should redo() not always be the same

as doEdit()?

redo() needs to bring the user's attention to where and how the edit is being redone,

possibly using animation.

Also, doEdit() might place the edit on the undo history, which is not something we want

redo() to do.

END OF QUIZ

Page 11 of 12

Extra space if needed

Page 12 of 12

Extra space if needed

