Lecture 6: Input Models

Fall 2005 6.831 Ul Design and Implementation

Today’s Topics

e Input

Fall 2005 6.831 Ul Design and Implementation

Why Use Events for GUI Input?

¢ Console I/0O uses blocking procedure calls
print ("Enter name:”)
name = readLine();
print (“Enter phone number:”)
name = readLine();

- System controls the dialogue

e GUI input uses event handling instead
- User has much more control over the dialogue
- User can click on almost anything

Fall 2005 6.831 Ul Design and Implementation

Kinds of Input Events

e Raw input events
- Mouse moved
- Mouse button pressed or released
- Key pressed or released
e Translated input events
- Mouse click or double-click
- Mouse entered or exited component

- Keyboard focus gained or lost (loss of focus is
sometimes called “blur”)

- Character typed

Fall 2005 6.831 Ul Design and Implementation




Properties of an Input Event

e Mouse position (X,Y)
¢ Mouse button state
¢ Modifier key state (Ctrl, Shift, Alt, Meta)
e Timestamp
—Why is timestamp important?

Fall 2005 6.831 Ul Design and Implementation

Event Queue

¢ Events are stored in a queue
- User input tends to be bursty
- Queue saves application from hard real
time constraints (i.e., having to finish
handling each event before next one might
occur)
¢ Mouse moves are coalesced into a
single event in queue

- If application can’t keep up, then sketched
lines have very few points

Fall 2005 6.831 Ul Design and Implementation

Event Loop

o While application is running
- Block until an event is ready
- Get event from queue
- (sometimes) Translate raw event into higher-level events
¢ Generates double-clicks, characters, focus, enter/exit, etc.
* Translated events are put into the queue
- Dispatch event to target component
e Who provides the event loop?
- High-level GUI toolkits do it internally (Java, VB, C#)

- Low-level toolkits require application to do it (MS Win, Palm,
SWT)

Fall 2005 6.831 Ul Design and Implementation

Event Dispatch & Propagation

¢ Dispatch: choose target component for
event
- Key event: component with keyboard focus
- Mouse event: component under mouse
* Mouse capture: any component can grab
mouse temporarily so that it receives all mouse
events (e.g. for drag & drop)
¢ Propagation: if target component
declines to handle event, the event
passes up to its parent

Fall 2005 6.831 Ul Design and Implementation




Javascript Event Models

¢ Events propagate in different directions

on different browsers

- Netscape 4: downwards from root to target

—Internet Explorer: upwards from target to
root

- W3C standardized by combining them

- Netscape 6+/Mozilla/Opera/W3C: first
downwards (“capturing”), then upwards
(“bubbling”)

Fall 2005 6.831 Ul Design and Implementation 9

Designing a Controller

¢ A controller is a finite state machine
e Example: push button

& | pres
mouse enter

(invoke)

mouse exit

release

Fall 2005 6.831 Ul Design and Implementation 10

Interactors

e Generic reusable controllers (Garnet and Amulet toolkits)
- Selection interactor
- Move/Grow interactor
- New-point interactor
- Text editing interactor
- Rotating interactor
e Hide the details of handling input events and finite state
machines
e Useful only in a component model
e Parameterized
- start, stop, abort events
- start location, inside/outside predicates
- feedback components
- callback procedures on event transitions

Fall 2005 6.831 Ul Design and Implementation 11




