
1

Fall 2005 6.831 UI Design and Implementation 1

���������	�
����������

Fall 2005 6.831 UI Design and Implementation 2

��������������

� Input

Fall 2005 6.831 UI Design and Implementation 3

� ��������������������
�
�����

� Console I/O uses blocking procedure calls
print (�Enter name:�)
name = readLine();
print (�Enter phone number:�)
name = readLine();

� System controls the dialogue

� GUI input uses event handling instead
� User has much more control over the dialogue 
� User can click on almost anything

Fall 2005 6.831 UI Design and Implementation 4

���������
�����������

� Raw input events
� Mouse moved
� Mouse button pressed or released
� Key pressed or released

� Translated input events
� Mouse click or double-click
� Mouse entered or exited component
� Keyboard focus gained or lost (loss of focus is 

sometimes called �blur�)
� Character typed



2

Fall 2005 6.831 UI Design and Implementation 5

 ����������������
����������

� Mouse position (X,Y)
� Mouse button state
� Modifier key state (Ctrl, Shift, Alt, Meta)
� Timestamp
�Why is timestamp important?

Fall 2005 6.831 UI Design and Implementation 6

������!����

� Events are stored in a queue
�User input tends to be bursty
�Queue saves application from hard real 

time constraints (i.e., having to finish 
handling each event before next one might 
occur)

� Mouse moves are coalesced into a 
single event in queue
� If application can�t keep up, then sketched 

lines have very few points

Fall 2005 6.831 UI Design and Implementation 7

����������

� While application is running
� Block until an event is ready
� Get event from queue
� (sometimes) Translate raw event into higher-level events

� Generates double-clicks, characters, focus, enter/exit, etc.
� Translated events are put into the queue

� Dispatch event to target component
� Who provides the event loop?
� High-level GUI toolkits do it internally (Java, VB, C#)
� Low-level toolkits require application to do it (MS Win, Palm, 

SWT)

Fall 2005 6.831 UI Design and Implementation 8

������"��������#� ����$�����

� Dispatch: choose target component for 
event
�Key event: component with keyboard focus
�Mouse event: component under mouse
�Mouse capture: any component can grab 

mouse temporarily so that it receives all mouse 
events (e.g. for drag & drop)

� Propagation: if target component 
declines to handle event, the event 
passes up to its parent



3

Fall 2005 6.831 UI Design and Implementation 9

%��������� �����������

� Events propagate in different directions 
on different browsers
�Netscape 4: downwards from root to target
� Internet Explorer: upwards from target to 

root
�W3C standardized by combining them
�Netscape 6+/Mozilla/Opera/W3C: first 

downwards (�capturing�), then upwards 
(�bubbling�)

Fall 2005 6.831 UI Design and Implementation 10

"���$���$���&���������

� A controller is a finite state machine
� Example: push button

Hover

Armed

Disarmed

press

Idle

mouse enter

mouse exit

exitenterrelease
(invoke)

release

Fall 2005 6.831 UI Design and Implementation 11


����������

� Generic reusable controllers (Garnet and Amulet toolkits)
� Selection interactor
� Move/Grow interactor
� New-point interactor
� Text editing interactor
� Rotating interactor

� Hide the details of handling input events and finite state 
machines

� Useful only in a component model
� Parameterized

� start, stop, abort events
� start location, inside/outside predicates
� feedback components
� callback procedures on event transitions


