
1

Fall 2004 6.831 UI Design and Implementation 1

���������	�
�����������



2

Fall 2004 6.831 UI Design and Implementation 2

������������� �

Suggested by Jennifer Lin

This is the File Open dialog box from Microsoft PowerPoint.  File open dialogs have evolved considerably 
since they appeared in early graphical user interfaces; early file dialogs just showed the filesystem and gave 
controls for navigating around it.  Current file dialogs like this one do a lot more.  What evidence of task 
analysis – that is, careful thinking about what goals and subgoals a user might have when opening or saving a 
file – can we find in this interface?

One example is the set of shortcut icons on the left side.  There are some very common places that users go to 
open files, like their Desktop or their My Documents folder.  The History icon captures another aspect of the 
file-opening task: that users often need to open a file that they’ve opened recently.

If you click on My Network Places, you’ll see more evidence of task analysis: not just a list of the network 
places that you’ve already created (network places are basically bookmarks pointing to file servers), but also 
icons for the common subtasks involved in managing the list of network places: Add Network Place to add a 
new one; and the Network Setup Wizard if you aren’t connected to the network yet.

The toolbar icons across the top offer other examples of subtasks of opening or saving a file.  Probably the 
most important is the New Folder icon, which lets you create a new folder to save your file in.

It’s worth noting that all these operations are available elsewhere in Windows – recently opened files are 
found in PowerPoint’s File menu, the Network Setup wizard can be found from the Start menu or the Control 
Panel, and new folders can be made with Windows Explorer.  So they’re here only as shortcuts to 
functionality that was already available – but shortcuts that serve both learnability (since the user doesn’t 
have to learn about all those other places in order to perform the task of this dialog) and efficiency (since even 
if I know about those other places, I’m not forced to navigate to them to get the job done).

But you obviously can’t put every possible operation into a dialog box like this, nor would you want to try –
usability depends strongly on simplicity.  That’s why task analysis is valuable; it helps you select what to 
include and what to exclude.

The pull-down menu under the Open button is also interesting – it shows how several different goals might use 
this file dialog as a subtask. Open Read-only suggests that I’m opening a file only to look at it. Open a Copy 
means I want to use the file as a starting point for a new file. Why are these options useful? They’re designed 
for error prevention: if I use them, they’ll keep me from accidentally overwriting the original file with 
changes I didn’t want to make.  (Unfortunately they’re probably rarely used; despite being a regular user of 
PowerPoint, I didn’t even notice them until looking closely at this dialog.)



3

Fall 2004 6.831 UI Design and Implementation 3

������������

� Output models
� Drawing
� Rasterization
� Color models

Today’s lecture continues our look into the mechanics of implementing user interfaces, by looking at 
output in more detail.

Our goal for these implementation lectures is not to teach any one particular GUI system or toolkit, 
but to give a survey of the issues involved in GUI programming and the range of solutions adopted 
by various systems.  Presumably you’ve already encountered at least one GUI toolkit, probably Java 
Swing.  These lectures should give you a sense for what’s common and what’s unusual in the toolkit 
you already know, and what you might expect to find when you pick up another GUI toolkit.



4

Fall 2004 6.831 UI Design and Implementation 4

������
�����������

� Components
� Graphical objects arranged in a tree with automatic redraw
� Example: Label object, Line object
� Also called: views, interactors, widgets, controls, retained 

graphics
� Strokes
� High-level drawing primitives: lines, shapes, curves, text
� Example: drawText() method, drawLine() method
� Also called: vector graphics, structured graphics

� Pixels
� 2D array of pixels
� Also called: raster, image, bitmap

There are basically three ways to represent the output of a graphical user interface.

Components is the same as the view hierarchy we discussed last week.  Parts of the display are 
represented by view objects arranged in a spatial hierarchy, with automatic redraw propagating down 
the hierarchy.  There have been many names for this idea over the years; the GUI community hasn’t 
managed to settle on a single preferred term.

Strokes draws output by making calls to high-level drawing primitives, like drawLine, 
drawRectangle, drawArc, and drawText.

Pixels regards the screen as an array of pixels and deals with the pixels directly.

All three output models appear in virtually every modern GUI application.  The component model 
always appears at the very top level, for windows, and often for components within the windows as 
well.  At some point, we reach the leaves of the view hierarchy, and the leaf views draw themselves 
with stroke calls.  A graphics package then converts those strokes into pixels displayed on the screen. 
For performance reasons, a component may short-circuit the stroke package and draw pixels on the 
screen directly. On Windows, for example, video players do this using the DirectX interface to have 
direct control over a particular screen rectangle.

What model do each of the following representations use?  HTML (component); Postscript laser 
printer (stroke input, pixel output); plotter (stroke input and output); PDF (stroke); LCD panel 
(pixel).



5

Fall 2004 6.831 UI Design and Implementation 5

���� ���	����� !�! ���"�����#��$

� Component model
� Each node and edge is a component
� A node might have two subcomponents: circle and label

� Stroke model
� Graph view draws lines, rectangles and text

� Pixel model
� Graph view has pixel images of the nodes

A

C

B

Since every application uses all three models, the design question becomes: at which points in your 
application do you want to step down into a lower-level output model?  Here’s an example.  Suppose 
you want to build a view that displays a graph of nodes and edges.

One approach would represent each node and each edge in the graph by a component. Each node in 
turn might have two components, a rectangle and a text label.  Eventually, you’ll get down to the 
primitive components available in your GUI toolkit.  Most GUI toolkits provide a text label 
component; most don’t provide a primitive circle component.  One notable exception is Amulet, 
which has component equivalents for all the common drawing primitives.  This would be a pure 
component model, at least from your application’s point of view – stroke output and pixel output 
would still happen, but inside primitive components that you took from the library.

Alternatively, the top-level window might have no subcomponents.  Instead, it would draw the entire 
graph by a sequence of stroke calls: drawRectangle for the node outlines, drawText for the labels, 
drawLine for the edges.  This would be a pure stroke model.
Finally, your graph view might bypass stroke drawing and set pixels in the window directly.  The 
text labels might be assembled by copying character images to the screen.  This pure pixel model is 
rarely used nowadays, because it’s the most work for the programmer, but it used to be the only way 
to program graphics.

Hybrid models for the graph view are certainly possible, in which some parts of the output use one 
model, and others use another model.  The graph view might use components for nodes, but draw the 
edges itself as strokes.  It might draw all the lines itself, but use label components for the text.



6

Fall 2004 6.831 UI Design and Implementation 6

��������!�%���! �
�����������

� Layout
� Input
� Redraw
� Drawing order
� Heavyweight objects
� Device dependence

Layout: Components remember where they were put, and draw themselves there.  They also support 
automatic layout.  With stroke or pixel models, you have to figure out (at drawing time) where each 
piece goes, and put it there.

Input: Components participate in event dispatch and propagation, and the system automatically does 
hit-testing (determining whether the mouse is over the component when an event occurs) for 
components, but not for strokes.  If a graph node is a component, then it can receive its own click and 
drag events.  If you stroked the node instead, then you have to write code to determine which node 
was clicked or dragged.

Redraw: An automatic redraw algorithm means that components redraw themselves automatically 
when they have to.  Furthermore, the redraw algorithm is efficient: it only redraws components 
whose extents intersect the damaged region.  The stroke or pixel model would have to do this test by 
hand.  In practice, most stroked components don’t bother, simply redrawing everything whenever 
some part of the view needs to be redrawn.

Drawing order: It’s easy for a parent to draw before (underneath) or after (on top of) all of its 
children.  But it’s not easy to interleave parent drawing with child drawing.  So if you’re using a 
hybrid model, with some parts of your view represented as components and others as strokes, then 
the components and strokes generally fall in two separate layers, and you can’t have any complicated 
z-ordering relationships between strokes and components.

Heavyweight objects: Every component must be an object (and even an object with no fields costs 
about 20 bytes in Java). As we’ve seen, the view hierarchy is overloaded not just with drawing 
functions but also with event dispatch, automatic redraw, and automatic layout, so that further bulks 
up the class.  The flyweight pattern used by InterView’s Glyphs can reduce this cost somewhat.  But 
views derived from large amounts of data – say, a 100,000-node graph – generally can’t use a 
component model.

Device dependence: The stroke model is largely device independent.  In fact, it’s useful not just for 
displaying to screens, but also to printers, which have dramatically different resolution.  The pixel 
model, on the other hand, is extremely device dependent.  A directly-mapped pixel image won’t look 
the same on a screen with a different resolution.



7

Fall 2004 6.831 UI Design and Implementation 7

�$ �
�������������!������

Components

Strokes

Pixels

drawing

rasterization

As we said earlier, almost every GUI program uses all three models.  At the highest level, a typical 
program presents itself in a window, which is a component.  At the lowest level, the window appears 
on the screen as a rectangle of pixels.  So a series of steps has to occur that translates that window 
component (and all the components it contains) into pixels.

The step from the component model down to the stroke model is usually called drawing. We’ll look 
at that first.

The step from strokes down to pixels is called rasterization (or scan conversion). The specific 
algorithms that rasterize various shapes are beyond the scope of this course (see 6.837 Computer 
Graphics instead).  But we’ll talk about some of the effects of rasterization, and what you need to 
know as a UI programmer to control those effects.



8

Fall 2004 6.831 UI Design and Implementation 8

���$�! ��!�����%� �!�!������

� Drawing goes top down
� Draw self (using strokes or pixels)
� For each child component,
� If child intersects clipping region then

� intersect clipping region with child�s bounding box
� recursively draw child with clip region = intersection

A

C

Bclip region

Here’s how drawing works in the component model.  Drawing is a top-down process: starting from 
the root of the component tree, each component draws itself, then draws each of its children 
recursively.  The process is optimized by passing a clipping region to each component, indicating 
the area of the screen that needs to be drawn.  Child components that do not intersect the clipping 
region are simply skipped, not drawn. In the example above, nodes B and C would not need to be 
drawn.  When a component partially intersects the clipping region, it must be drawn – but any 
strokes or pixels it draws when the clipping region is in effect will be masked against the clip region, 
so that only pixels falling inside the region actually make it onto the screen.

For the root component, the clipping region might be the entire screen.  As drawing descends the 
component tree, however, the clipping region is intersected with each component’s bounding box.  
So the clipping region for a component deep in the tree is the intersection of the bounding boxes of 
its ancestors.

For high performance, the clipping region is normally rectangular, using component bounding boxes
rather than the components’ actual shape.  But it doesn’t have to be that way.  A clipping region can 
be an arbitrary shape on the screen.  This can be very useful for visual effects: e.g., setting a string of 
text as your clipping region, and then painting an image through it like a stencil.  Postscript was the 
first stroke model to allow this kind of nonrectangular clip region. Now many graphics toolkits 
support nonrectangular clip regions. For example, on Microsoft Windows and X Windows, you can 
create nonrectangular windows, which clip their children into a nonrectangular region.



9

Fall 2004 6.831 UI Design and Implementation 9

��� � ���!��&��� �����'����$

A

C

B
A

D

B
A

C

B

damaged region

When a component needs to change its appearance, it doesn’t repaint itself directly.  It can’t, because 
the drawing process has to occur top-down through the component hierarchy: the component’s 
ancestors and older siblings need to have a chance to paint themselves underneath it.  (So, in Java, 
even though a component can call its own paint() method directly, you generally shouldn’t do it!)

Instead, the component asks the graphics system to repaint it at some time in the future.  This request 
includes a damaged region, which is the part of the screen that needs to be repainted.  Often, this is 
just the entire bounding box of the component; but complex components might figure out which part 
of the screen corresponds to the part of the model that changed, so that only that part is damaged.

The repaint request is then queued for later.  Multiple pending repaint requests from different 
components are consolidated into a single damaged region, which is often represented just as a 
rectangle – the bounding box of all the damaged regions requested by individual components.  That 
means that undamaged screen area is being considered damaged, but there’s a tradeoff between the 
complexity of the damaged region representation and the cost of repainting. 

Eventually – usually after the system has handled all the input events (mouse and keyboard) waiting 
on the queue -- the repaint request is finally satisfied, by setting the clipping region to the damaged 
region and redrawing the component tree from the root.



10

Fall 2004 6.831 UI Design and Implementation 10

(�)*��'����$ �%������������! �

�������

Determine 
damaged region

Redraw parent
(children blink out!)

Redraw children

Object moves

There’s an unfortunate side-effect of the automatic damage/redraw algorithm. If we draw a 
component tree directly to the screen, then moving a component can make the screen appear to flash 
– objects flickering while they move, and nearby objects flickering as well.

When an object moves, it needs to be erased from its original position and drawn in its new position.  
The erasure is done by redrawing all the objects in the view hierarchy that intersect this damaged 
region. If the drawing is done directly on the screen, this means that all the objects in the damaged 
region temporarily disappear, before being redrawn.  Depending on how screen refreshes are timed 
with respect to the drawing, and how long it takes to draw a complicated object or multiple layers of 
the hierarchy, these partial redraws may be briefly visible on the monitor, causing a perceptible 
flicker.



11

Fall 2004 6.831 UI Design and Implementation 11

��+��,-������! 

� Double-buffering solves the flashing 
problem

Screen

Memory 
buffer

Double-buffering solves this flickering problem.  An identical copy of the screen contents is kept in 
a memory buffer.  (In practice, this may be only the part of the screen belonging to some subtree of 
the view hierarchy that cares about double-buffering.)  This memory buffer is used as the drawing 
surface for the automatic damage/redraw algorithm. After drawing is complete, the damaged region 
is just copied to screen as a block of pixels.  Double-buffering reduces flickering for two reasons: 
first, because the pixel copy is generally faster than redrawing the view hierarchy, so there’s less 
chance that a screen refresh will catch it half-done; and second, because unmoving objects that 
happen to be caught, as innocent victims, in the damaged region are never erased from the screen, 
only from the memory buffer.

It’s a waste for every individual view to double-buffer itself.  If any of your ancestors is double-
buffered, then you’ll derive the benefit of it. So double-buffering is usually applied to top-level 
windows.

Why is it called double-buffering?  Because it used to be implemented by two interchangeable 
buffers in video memory.  While one buffer was showing, you’d draw the next frame of animation 
into the other buffer.  Then you’d just tell the video hardware to switch which buffer it was showing, 
a very fast operation that required no copying and was done during the CRT’s vertical refresh 
interval so it produced no flicker at all.  



12

Fall 2004 6.831 UI Design and Implementation 12

.��/������

� Drawing surface
� Also called drawable (X Windows), GDI (MS Win)
� Screen, memory buffer, print driver, file, remote screen

� Graphics context
� Encapsulates drawing parameters so they don�t have to be 

passed with each call to a drawing primitive
� Font, color, line width, fill pattern, etc.

� Coordinate system
� Origin, scale, rotation

� Clipping region
� Drawing primitives
� Line, circle, ellipse, arc, rectangle, text, polyline, shapes

We’ve already considered the component model in some detail.  So now, let’s look at the stroke 
model.

Every stroke model has some notion of a drawing surface. The screen is only one possible place 
where drawing might go. Another common drawing surface is a memory buffer, which is an array of 
pixels just like the screen.  Unlike the screen, however, a memory buffer can have arbitrary 
dimensions.  The ability to draw to a memory buffer is essential for double-buffering.  Another target 
is a printer driver, which forwards the drawing instructions on to a printer.  Although most printers 
have a pixel model internally (when the ink actually hits the paper), the driver often uses a stroke 
model to communicate with the printer, for compact transmission. Postscript, for example, is a 
stroke model.

Most stroke models also include some kind of a graphics context, an object that bundles up drawing 
parameters like color, line properties (width, end cap, join style), fill properties (pattern), and font.

The stroke model may also provide a current coordinate system, which can be translated, scaled, 
and rotated around the drawing surface.  We’ve already discussed the clipping region, which acts 
like a stencil for the drawing.  Finally, a stroke model must provide a set of drawing primitives, 
function calls that actually produce graphical output.

Many systems combine all these responsibilities into a single object.  Java’s Graphics object is a 
good example of this approach.  In other toolkits, the drawing surface and graphics context are 
independent objects that are passed along with drawing calls.

When state like graphics context, coordinate system, and clipping region are embedded in the 
drawing surface, the surface must provide some way to save and restore the context.  A key reason 
for this is so that parent views can pass the drawing surface down to a child’s draw method without 
fear that the child will change the graphics context.  In Java, for example, the context can be saved 
by Graphics.create(), which makes a copy of the Graphics object.  Notice that this only duplicates the 
graphics context; it doesn’t duplicate the drawing surface, which is still the same.



13

Fall 2004 6.831 UI Design and Implementation 13

'������0���!

� Is (0,0) the center of the top-left pixel, or is it the upper left 
corner of the pixel?
� MS Win: center of pixel
� Java: upper left corner

� Where is line (0,0) � (10,0) actually drawn?
� MS Win: endpoint pixel excluded
� Java Graphics: pen hangs down and right
� Java Graphics2D: antialiased pen, optional � pixel adjustments 

made for compatibility
� Where is empty rectangle (0,0) � (10,10) drawn?

� MSWin: connecting those pixels
� Java: extends one row below and one column right

� Where is filled rectangle (0,0) � (10,10) drawn?
� MSWin: 121 pixels
� Java: 100 pixels

When you’re using a stroke model, it’s important to understand how the strokes are actually 
converted into pixels.  Different platforms make different choices.

One question concerns how stroke coordinates, which represent zero-dimensional points, are 
translated into pixel coordinates, which are 2-dimensional squares.  Microsoft Windows places the 
stroke coordinate at the center of the corresponding pixel; Java’s stroke model places the stroke 
coordinates between pixels.

The other questions concern which pixels are actually drawn when you request a line or a rectangle.



14

Fall 2004 6.831 UI Design and Implementation 14

&!��������! �!��.�+����� '�!����! 

Simple Antialiased Subpixel rendering

It’s beyond the scope of this lecture to talk about algorithms for converting a stroke into pixels.  But 
you should be aware of some important techniques for making strokes look good.

One of these techniques is antialiasing, which is a way to make an edge look smoother.  Instead of 
making a binary decision between whether to color a pixel black or white, antialiasing uses a shade 
of gray whose value varies depending on how much of the pixel is covered by the edge.  In practice, 
the edge is between two arbitrary colors, not just black and white, so antialiasing chooses a point on 
the gradient between those two colors.  The overall effect is a fuzzier but smoother edge.

Subpixel rendering takes this a step further.  Every pixel on an LCD screen consists of three discrete 
pixels side-by-side: red, green, and blue.  So we can get a horizontal resolution which is three times 
the nominal pixel resolution of the screen, simply by choosing the colors of the pixels along the edge 
so that the appropriate subpixels are light or dark.  It only works on LCD screens, not CRTs, because 
CRT pixels are often arranged in triangles, and because CRTs are analog, so the blue in a single 
“pixel” usually consists of a bunch of blue phosphor dots interspersed with green and red phosphor 
dots.  You also have to be careful to smooth out the edge to avoid color fringing effects on perfectly 
vertical edges.  And it works best for high-contrast edges, like this edge between black and white.  
Subpixel rendering is ideal for text rendering, since text is usually small, high-contrast, and benefits 
the most from a boost in horizontal resolution.  Windows XP includes ClearType, an implementation 
of subpixel rendering for Windows fonts.  (For more about subpixel rendering, see Steve Gibson, 
“Sub-Pixel Font Rendering Technology”, http://grc.com/cleartype.htm)



15

Fall 2004 6.831 UI Design and Implementation 15

1���������

� Pixel model is a rectangular array of pixels
� Each pixel is a vector (e.g., red, green, blue components), so pixel 

array is really 3 dimensional
� Bits per pixel (bpp)

� 1 bpp: black/white, or bit mask
� 4-8 bpp: each pixel is an index into a color palette
� 24 bpp: 8 bits for each color
� 32 bpp: 8 bits for each color + alpha channel

� Color components (e.g. RGB) are also called channels or bands
� Pixel model can be arranged in many ways

� Packed into words (RGBR GBRG �) or loosely (RGB- RGB- �)
� Separate planes (RRR�GGG�BBB�) vs. interleaved (RGB RGB 

RGB�)
� Scanned from top to bottom vs. bottom to top

Finally, let’s talk in more detail about what the pixel model looks like.

Put simply, it’s a rectangular array of pixels – but pixels themselves are not always so simple.  A 
pixel itself has a depth, so this model is really three dimensional. Depth is often expressed in bits 
per pixel (bpp).  The simplest kind of pixel model has 1 bit per pixel; this is suitable for representing 
black and white images.  It’s also used for bitmasks, where the single-bit pixels are interpreted as 
boolean values (pixel present or pixel missing).  Bitmasks are useful for clipping – you can think of a 
bitmask as a stencil.

Another kind of pixel representation uses each pixel value as an index into a palette, which is just a 
list of colors.  In the 4-bpp model, for example, each of the 16 possible pixel values represents a 
different color.  This kind of representation, often called Indexed Color, was useful when memory 
was scarce; you still see it in the GIF file format, but otherwise it isn’t used much today.

The most common pixel representation is often called “true color” or “direct color”; in this model, 
each pixel represents a color directly.  The color value is usually split up into multiple components: 
red, green, and blue.  (Color components are also called channels or bands; the red channel of an 
image, for example, is a rectangular array of the red values of its pixels.)

A pixel model can be arranged in memory (or a file) in various ways: packed tightly together to save 
memory, or spread out loosely for faster access; with color components interleaved or separated; and 
scanned from the top (so that the top-left pixel appears first) or the bottom (the bottom-left pixel 
appearing first).



16

Fall 2004 6.831 UI Design and Implementation 16

���!�����!��

� Alpha is a pixel�s transparency
� from 0.0 (transparent) to 1.0 (opaque)
� so each pixel has red, green, blue, and 

alpha values

� Uses for alpha
�Antialiasing
�Nonrectangular images
�Translucent components
�Clipping regions with antialiased edges

Many pixel models have a fourth channel in addition to red, green, and blue: the pixel’s alpha value, 
which represents its degree of transparency.



17

Fall 2004 6.831 UI Design and Implementation 17

-��-��

� BitBlt (bit block transfer) copies a block of 
pixels from one image to another
� Drawing images on screen
� Double-buffering
� Scrolling
� Clipping with nonrectangular masks

� Compositing rules control how pixels from 
source and destination are combined
� More about this in a later lecture

The primary operation in the pixel model is copying a block of pixels from one place to another –
often called bitblt (pronounced “bit blit”).  This is used for drawing pictures and icons on the screen, 
for example.  It’s also used for double-buffering – after the offscreen buffer is updated, its contents 
are transferred to the screen by a bitblt.

Bitblt is also used for screen-to-screen transfers.  To do fast scrolling, for example, you can bitblt the 
part of the window that doesn’t change upwards or downwards, to save the cost of redrawing it. (For 
example, look at JViewport.BLIT_SCROLL_MODE.)

It’s also used for sophisticated drawing effects.  You can use bitblt to combine two images together, 
or to combine an image with a mask, in order to clip it or composite them together.

Bitblt isn’t always just a simple array copy operation that replaces destination pixels with source 
pixels.  There are various different rules for combining the destination pixels with the source pixels.  
These rules are called compositing (alpha compositing, when the images have an alpha channel), 
and we’ll talk about them in a later lecture.



18

Fall 2004 6.831 UI Design and Implementation 18

�� � ���������� ���

� GIF
� 8 bpp, palette uses 24-bit colors
� 1 color in the palette can be transparent (1-bit alpha channel)
� lossless compression
� suitable for screenshots, stroked graphics, icons

� JPEG
� 24 bpp, no alpha
� lossy compression: visible artifacts (dusty noise, moire patterns)
� suitable for photographs

� PNG
� lossless compression
� 1, 2, 4, 8 bpp with palette
� 24 or 48 bpp with true color
� 32 or 64 bpp with true color and alpha channel
� suitability same as GIF
� better than GIF, but no animation
� IE supports transparent pixels, but not full alpha transparency

Here are a few common image file formats.



19

Fall 2004 6.831 UI Design and Implementation 19

%��������

� RGB: cube
� Red, green, blue

� HSV: hexagonal cone
� Hue: kind of color

� Angle around cone
� Saturation: amount of pure color

� 0% = gray, 100% = pure color
� Value: brightness

� 0% = dark, 100% = bright
� HLS: double-hexagonal cone

� Hue, lightness, saturation
� Pulls up center of HSV model, so that only white has lightness 1.0 

and pure colors have lightness 0.5
� Cyan-Magenta-Yellow(-Black)

� Used for printing, where pigments absorb wavelengths instead of 
generating them

Now let’s look at how colors are represented in GUI software.

At the lowest level, the RGB model rules.  The RGB model is a unit cube, with (0,0,0) corresponding 
to black, (1, 1, 1) corresponding to white, and the three dimensions measuring levels of red, green, 
and blue.  The RGB model is used directly by CRT and LCD monitors for display, since each pixel 
in a monitor has separate red, green, and blue components.

HSV (hue, saturation value) is a better model for how humans perceive color, and more useful for 
choosing colors in user interface design.  HSV is a cone.  We’ve already encountered hue and value 
in our discussion of visual variables.  Saturation is the degree of color, as opposed to grayness.  
Colors with zero saturation are shades of gray; colors with 100% saturation are pure colors.

HLS (hue, lightness, saturation) is a symmetrical relative of the HSV model, which is elegant.  See 
the pictures on the next page.

Finally, the CMYK (cyan, magenta, yellow, and sometimes black) is similar to the RGB model, but 
used for print colors.



20

Fall 2004 6.831 UI Design and Implementation 20

�.#�2���.

Here are some pictures of the HSV and HLS models.



21

Fall 2004 6.831 UI Design and Implementation 21

��!��������+�  �! �
�����

� Something you�re drawing isn�t 
appearing on the screen.  Why not?
�Wrong place
�Wrong size
�Wrong color
�Wrong z-order

Wrong place: what’s the origin of the coordinate system? What’s the scale?  Where is the component 
located in its parent?

Wrong size: if a component has zero width and zero height, it will be completely invisible no matter 
what it tries to draw– everything will be clipped.  Zero width and zero height are the defaults for 
all components in Swing – you have to use automatic layout or manual setting to make it a more 
reasonable size.  Check whether the component (and its ancestors) have nonzero sizes.

Wrong color: is the drawing using the same color as the background?  Is it using 100% alpha?

Wrong z-order: is something else drawing on top?


