
1

Fall 2004 6.831 UI Design and Implementation 1

���������	�
�������
����

Fall 2004 6.831 UI Design and Implementation 2

�
�������
����

� Output models
� Drawing
� Rasterization
� Color models

Fall 2004 6.831 UI Design and Implementation 3

������
�������
����

� Components
� Graphical objects arranged in a tree with automatic redraw
� Example: Label object, Line object
� Also called: views, interactors, widgets, controls, retained

graphics
� Strokes
� High-level drawing primitives: lines, shapes, curves, text
� Example: drawText() method, drawLine() method
� Also called: vector graphics, structured graphics

� Pixels
� 2D array of pixels
� Also called: raster, image, bitmap

Fall 2004 6.831 UI Design and Implementation 4

���� ���	�����������������������

� Component model
� Each node and edge is a component
� A node might have two subcomponents: circle and label

� Stroke model
� Graph view draws lines, rectangles and text

� Pixel model
� Graph view has pixel images of the nodes

A

C

B

2

Fall 2004 6.831 UI Design and Implementation 5

 ���������!�

�����
�������
����

� Layout
� Input
� Redraw
� Drawing order
� Heavyweight objects
� Device dependence

Fall 2004 6.831 UI Design and Implementation 6

"
� �
�������
����� �������

Components

Strokes

Pixels

drawing

rasterization

Fall 2004 6.831 UI Design and Implementation 7

���������������!
� �
������
���

� Drawing goes top down
� Draw self (using strokes or pixels)
� For each child component,
� If child intersects clipping region then

� intersect clipping region with child�s bounding box
� recursively draw child with clip region = intersection

A

C

Bclip region

Fall 2004 6.831 UI Design and Implementation 8

��� ��������#��
� �����$�����

A

C

B
A

D

B
A

C

B

damaged region

3

Fall 2004 6.831 UI Design and Implementation 9

%�&'��$����� �!������(��������

�))����

Determine
damaged region

Redraw parent
(children blink out!)

Redraw children

Object moves

Fall 2004 6.831 UI Design and Implementation 10

�
�*��+,�))�����

� Double-buffering solves the flashing
problem

Screen

Memory
buffer

Fall 2004 6.831 UI Design and Implementation 11

-��
.���
���

� Drawing surface
� Also called drawable (X Windows), GDI (MS Win)
� Screen, memory buffer, print driver, file, remote screen

� Graphics context
� Encapsulates drawing parameters so they don�t have to be

passed with each call to a drawing primitive
� Font, color, line width, fill pattern, etc.

� Coordinate system
� Origin, scale, rotation

� Clipping region
� Drawing primitives
� Line, circle, ellipse, arc, rectangle, text, polyline, shapes

Fall 2004 6.831 UI Design and Implementation 12

$������/���
�

� Is (0,0) the center of the top-left pixel, or is it the upper left
corner of the pixel?
� MS Win: center of pixel
� Java: upper left corner

� Where is line (0,0) � (10,0) actually drawn?
� MS Win: endpoint pixel excluded
� Java Graphics: pen hangs down and right
� Java Graphics2D: antialiased pen, optional � pixel adjustments

made for compatibility
� Where is empty rectangle (0,0) � (10,10) drawn?

� MSWin: connecting those pixels
� Java: extends one row below and one column right

� Where is filled rectangle (0,0) � (10,10) drawn?
� MSWin: 121 pixels
� Java: 100 pixels

4

Fall 2004 6.831 UI Design and Implementation 13

#����������� ����-�*����� $��������

Simple Antialiased Subpixel rendering

Fall 2004 6.831 UI Design and Implementation 14

0������
���

� Pixel model is a rectangular array of pixels
� Each pixel is a vector (e.g., red, green, blue components), so

pixel array is really 3 dimensional
� Bits per pixel (bpp)
� 1 bpp: black/white, or bit mask
� 4-8 bpp: each pixel is an index into a color palette
� 24 bpp: 8 bits for each color
� 32 bpp: 8 bits for each color + alpha channel

� Color components (e.g. RGB) are also called
channels or bands

� Pixel model can be arranged in many ways
� Separate planes (RRR�GGG�BBB�) vs. interleaved (RGB

RGB RGB�)
� Scanned from top to bottom vs. bottom to top

Fall 2004 6.831 UI Design and Implementation 15

������������

� Alpha is a pixel�s transparency
� from 0.0 (transparent) to 1.0 (opaque)
� so each pixel has red, green, blue, and

alpha values

� Uses for alpha
�Antialiasing
�Nonrectangular images
�Translucent components
�Clipping regions with antialiased edges

Fall 2004 6.831 UI Design and Implementation 16

,��,��

� BitBlt (bit block transfer) copies a block of
pixels from one image to another
� Drawing images on screen
� Scrolling
� Double-buffering
� Clipping with nonrectangular masks

� Alpha compositing rules control how pixels
from source and destination are combined
� More about this in a later lecture

5

Fall 2004 6.831 UI Design and Implementation 17

 � ����(����(
�� ���

� GIF
� 8 bpp, palette uses 24-bit colors
� 1 color in the palette can be transparent (1-bit alpha channel)
� lossless compression
� suitable for screenshots, stroked graphics, icons

� JPEG
� 24 bpp, no alpha
� lossy compression: visible artifacts (dusty noise, moire patterns)
� suitable for photographs

� PNG
� lossless compression
� 1, 2, 4, 8 bpp with palette
� 24 or 48 bpp with true color
� 32 or 64 bpp with true color and alpha channel
� suitability same as GIF
� better than GIF, but no animation
� IE supports transparent pixels, but not full alpha transparency

Fall 2004 6.831 UI Design and Implementation 18

!
�
���
����

� RGB: cube
� Red, green, blue

� HSV: hexagonal cone
� Hue: kind of color

� Angle around cone
� Saturation: amount of pure color

� 0% = gray, 100% = pure color
� Value: brightness

� 0% = dark, 100% = bright
� HLS: double-hexagonal cone

� Hue, lightness, saturation
� Pulls up center of HSV model, so that only white has lightness 1.0

and pure colors have lightness 0.5
� Cyan-Magenta-Yellow(-Black)

� Used for printing, where pigments absorb wavelengths instead of
generating them

Fall 2004 6.831 UI Design and Implementation 19

"-��1�"�-

Fall 2004 6.831 UI Design and Implementation 20

"�����)
����*�������
�����

� Something you�re drawing isn�t
appearing on the screen. Why not?
�Wrong place
�Wrong size
�Wrong color
�Wrong z-order

