
1

Fall 2004 6.831 UI Design and Implementation 1

���������	�


���
�������������������

Fall 2004 6.831 UI Design and Implementation 2

�
�������
����

� Model-view-controller
� View hierarchy
� Observer

Fall 2004 6.831 UI Design and Implementation 3

�
�������� ��
���
����� ������

� Separation of responsibilities 
� Model: application state

� Maintains application state (data fields)
� Implements state-changing behavior
� Notifies dependent views/controllers when changes occur (observer 

pattern)
� View: output

� Occupies screen extent (position, size)
� Draws on the screen
� Listens for changes to the model
� Queries the model to draw it

� Controller: input
� Listens for keyboard & mouse events
� Tells the model or the view to change accordingly

� Decoupling
� Can have multiple views/controllers for same model
� Can reuse views/controllers for other models

Fall 2004 6.831 UI Design and Implementation 4

����!��"��#

Source: Krasner & Pope



2

Fall 2004 6.831 UI Design and Implementation 5

$%�# ���	���%��&����

Text display

Mutable string

Keystroke 
handler

Controller View

Model

change 
events

get text

edit text

ScreenKeyboard

Fall 2004 6.831 UI Design and Implementation 6

$%�# ���	�' �(�)�
����

Rendered 
page
view

Document
Object

Model (DOM)

Hyperlink 
handler

Controller View

Model

change 
events

get nodes

load new page

ScreenMouse

Fall 2004 6.831 UI Design and Implementation 7

$%�# ���	�!���(����)��*���' �(����+��

Web page
generator
(e.g. JSP)

Database

Request handler
(e.g. servlet)

Controller View

Model

get data
update

NetworkNetwork

Fall 2004 6.831 UI Design and Implementation 8

$%�# ���	����������������,��

Map display

Traffic
data

Speed
detector

Controller View

Model

get data

update change 
events

ScreenSensors



3

Fall 2004 6.831 UI Design and Implementation 9

�
����-����������

� How fine-grained are the observable parts of 
the model?
� getText() vs. getPartOfText(start, end)

� How fine-grained are the change descriptions 
(events)?
� �The string has changed somehow� vs. �Insertion 

between offsets 3 and 5�
� How fine-grained are event registrations (the 

events the listener actually sees)?
� �Tell me about every change� vs. �Tell me about 

changes between offsets 3 and 5�

Fall 2004 6.831 UI Design and Implementation 10

.�����
�����������
���
�������������

� Controller often needs output
� View must provide affordances for controller (e.g. scrollbar 

thumb)
� View must also provide feedback about controller state 

(e.g., depressed button)
� State shared between controller and view: Who 

manages the selection?
� Must be displayed by the view (as blinking text cursor or 

highlight)
� Must be updated and used by the controller
� Should selection be in model?

� Generally not
� Some views need independent selections (e.g. two windows on 

the same document)
� Other views need synchronized selections (e.g. table view & 

chart view)

Fall 2004 6.831 UI Design and Implementation 11

/������	���"������
���������� �0��
���
����

� MVC has largely been superseded by 
MV (Model-View)
� A reusable view manages both output 

and input
�Also called widget or component

� Examples: scrollbar, button, menubar

Fall 2004 6.831 UI Design and Implementation 12

���� �.��������

� Views are arranged into a hierarchy
� Containers
� Window, panel, rich text widget

� Components
� Canvas, button, label, textbox
� Containers are also components

� Every GUI system has a view hierarchy, and 
the hierarchy is used in lots of ways
� Output
� Input
� Layout



4

Fall 2004 6.831 UI Design and Implementation 13

���� �.��������	�1�����

� Drawing
� Draw requests are passed top-down through the hierarchy

� Clipping
� Parent container prevents its child components from drawing 

outside its extent
� Z-order
� Children are (usually) drawn on top of parents
� Child order dictates drawing order between siblings

� Coordinate system
� Every container has its own coordinate system (origin 

usually at the top left)
� Child positions are expressed in terms of parent coordinates

Fall 2004 6.831 UI Design and Implementation 14

���� �.��������	������

� Event dispatch and propagation
�Raw input events (key presses, mouse 

movements, mouse clicks) are sent to 
lowest component
�Event propagates up the hierarchy until 

some component handles it

� Keyboard focus
�One component in the hierarchy has the 

focus (implicitly, its ancestors do too)

Fall 2004 6.831 UI Design and Implementation 15

���� �.��������	����
��

� Automatic layout: children are 
positioned and sized within parent
�Allows window resizing
�Smoothly deals with internationalization 

and platform differences (e.g. fonts or 
widget sizes)
�Lifts burden of maintaining sizes and 

positions from the programmer
�Although actually just raises the level of 

abstraction, because you still want to get the 
graphic design (alignment & spacing) right

Fall 2004 6.831 UI Design and Implementation 16

1(���+��� ������

� Observer pattern is used to decouple 
model from views

Model

View A

View B

Model

Model

Observer

Observer

stock market data

graph

table



5

Fall 2004 6.831 UI Design and Implementation 17

)��������������
�

Model Listener

modify

update

gets

return

register
interface Model {

void register(Observer)
void unregister(Observer)
Object get()
void modify()

}

interface Observer {
void update(Event)

}

Fall 2004 6.831 UI Design and Implementation 18

�
���������)���
���������)��
���
�����

Model Observer

modify

update

gets

return

register

model must establish
its invariants here,
so that gets are correct

Fall 2004 6.831 UI Design and Implementation 19

/�"�������
������"���!����"�
�����

Model Observer

modify

update

gets

unregister

register

observer may 
unregister itself
in response to 
an update

Fall 2004 6.831 UI Design and Implementation 20


���������""�������
����

Model Observer

modify(X)

update(X)

modify(Y)

update(Y)



6

Fall 2004 6.831 UI Design and Implementation 21

1���
��1�����
������

Model Observer A

modify(X)

update(X)

modify(Y)

Observer B

update(Y)

update(Y)

update(X)

.

.

.


