Lecture 2: User-Centered Design

Today's Topics

- Iterative Design
- Task Analysis

UI Hall of Fame or Shame?

Source: Interface Hall of Shame

Traditional Software Engineering Process: Waterfall Model

Requirements → Design → Code → Integration → Acceptance → Release
User interface design is risky
- So we’re likely to get it wrong

Users are not involved in validation until acceptance testing
- So we won’t find out until the end

UI flaws often cause changes in requirements and design
- So we have to throw away carefully-written and tested code

Every iteration corresponds to a release
- Evaluation (complaints) feeds back into next version’s design

Using your paying customers to evaluate your usability
- They won’t like it
- They won’t buy version 2
Spiral Model

- **Design**
- **Implement**
- **Evaluate**

Early Prototypes Can Detect Usability Problems

![Image of a phone interface]

Iterative Design of User Interfaces

- Early iterations use cheap prototypes
 - **Parallel design** is feasible: build & test multiple prototypes to explore design alternatives
- Later iterations use richer implementations, after UI risk has been mitigated
- More iterations generally means better UI
- Only mature iterations are seen by the world

User-Centered Design

- Iterative design
- Early focus on users and tasks
 - user analysis: who the users are
 - task analysis: what they need to do
 - involving users as evaluators, consultants, and sometimes designers
- Constant evaluation
 - Users are involved in every iteration
 - Every prototype is evaluated somehow
User-Centered Design in 6.831

1. Task analysis
2. Design sketches
3. Paper prototype
4. In-class user testing
5. Computer prototype
6. Heuristic evaluation
7. Implementation
8. User testing

<table>
<thead>
<tr>
<th>Design</th>
<th>Evaluate</th>
<th>Implement</th>
</tr>
</thead>
</table>

Case Study: Olympic Message System

- Cheap prototypes
 - Scenarios
 - User guides
 - Simulation (Wizard of Oz)
 - Prototyping tools (IBM Voice Toolkit)
- Iterative design
 - 200 (!) iterations for user guide
- Evaluation at every step
- You are not the user
 - Non-English speakers had trouble with alphabetic entry on telephone keypad

User & Task Analysis

- First step of user-centered design
- User analysis: who is the user?
- Task analysis: what does the user need to do?

Know Thy User

- Identify characteristics of target user population
 - Age, gender, ethnicity
 - Education
 - Physical abilities
 - General computer experience
 - Skills (typing? reading?)
 - Domain experience
 - Application experience
 - Work environment and other social context
 - Relationships and communication patterns
Multiple Classes of Users

- Many applications have several kinds of users
- Example: Olympic Message System
 - Athletes
 - Friends & family
 - Telephone operators
 - Sysadmins

How To Do User Analysis

- Techniques
 - Questionnaires
 - Interviews
 - Observation
- Obstacles
 - Developers and users may be systematically isolated from each other
 - Tech support shields developers from users
 - Marketing shields users from developers
 - Some users are expensive to talk to
 - Doctors, executives, union members

Example: Self-Service Grocery Checkout

- Who are the users?
 - Grocery shoppers
 - Wide range of ages (10-80) and physical abilities (height, mobility, strength)
 - No computer experience
 - No training: walk up and use
 - Knowledge of food, but not about supermarket inventory techniques
 - Supermarket shoppers often ask each other for help finding things
- Major user classes
 - Family shopping is often done by women, often accompanied by small children
 - Store clerks who need to help shoppers

Task Analysis

- Identify the individual tasks the program might solve
- Each task is a goal (what, not how)
- Often helps to start with overall goal of the system and then decompose it hierarchically into tasks
 - Overall goal: shoppers pay for their own groceries
 - Tasks:
 - Enter groceries into register
 - Bag groceries
 - Pay
Essential Parts of Task Analysis

- What needs to be done?
 - Goal
- What must be done first to make it possible?
 - Preconditions
 - Tasks on which this task depends
 - Information that must be known to the user
- What steps are involved in doing the task?
 - Subtasks
 - Subtasks may be decomposed recursively

Example: Self-service Grocery Checkout

- Goal
 - Enter groceries into register
- Preconditions
 - All the groceries you want are in your cart
- Subtasks
 - Enter prepackaged item
 - Enter loose produce

Other Questions to Ask About a Task

- Where is the task performed?
 - Front of supermarket, standing up
- How often is the task performed?
 - At most a few times a week
- What are its time or resource constraints?
 - A minute or two
- How is the task learned?
 - By trying it
 - By watching others
 - By being shown how by store personnel
- What can go wrong? (Exceptions, errors, emergencies)
 - Barcode is missing or smudged
 - Shopper wants to buy alcohol or cigarettes
- Who else is involved in the task?

How to Do a Task Analysis

- Interviews with users
- Direct observation of users performing tasks
Dangers of Task Analysis

- Duplicating a bad existing procedure in software
- Failing to capture good aspects of existing procedure

Hints for Better User & Task Analysis

- Questions to ask
 - Why do you do this? (goal)
 - How do you do it? (subtasks)
- Look for weaknesses in current situation
 - Goal failures, wasted time, user irritation
- Contextual inquiry
- Participatory design

Contextual Inquiry

- Observe users doing real work in the real work environment
- Be concrete
- Establish a master-apprentice relationship
 - User shows how and talks about it
 - Interviewer watches and asks questions
- Challenge assumptions and probe surprises

Participatory Design

- Include representative users directly in the design team
- OMS design team included an Olympic athlete as a consultant