Lecture 18: Predictive Evaluation

UI Hall of Fame or Shame?

- Keystroke-level models
- GOMS
- CPM-GOMS
Predictive Evaluation

- Predictive evaluation uses an engineering model of human cognition to predict usability
- Model is
 - abstract
 - quantitative
 - approximate
 - estimated from user experiments

Advantages of Predictive Evaluation

- Don’t have to build UI prototype
 - Can compare design alternatives with no implementation whatsoever
- Don’t have to test real live users
- Theory provides explanations of UI problems
 - So it points to the areas where design can be improved
 - User testing may only reveal problems, not explain them

Keystroke-Level Model (KLM)

- Keystroke or mouse button press
- Point with mouse
- Draw straight line with mouse
- Home hands between mouse and keyboard
- Mentally prepare

KLM Analysis

- Encode a method as a sequence of physical operators (KPHD)
- Use heuristic rules to insert mental operators (M)
- Add up times for each operator to get total time for method
Estimated Operator Times

- **Keystroke** determined by typing speed
 - 0.28 s average typist (40 wpm)
 - 0.08 s best typist (155 wpm)
 - 1.20 s worst typist

- **Pointing** determined by Fitts’s Law
 \[T = a + b \log(d/s + 1) = a + b ID \]
 - 0.8 + 0.1 ID [Card 1978]
 - 0.1 + 0.4 ID [Espe 1986]
 - -0.1 + 0.2 ID [MacKenzie 1990, mouse selection]
 - 0.14 + 0.25 ID [MacKenzie 1990, mouse dragging]
 OR
 - T ~ 1.1 s for all pointing tasks

- **Drawing** determined by steering law

Homing estimated by measurement
- 0.36 s (between keyboard and mouse)

Mental preparation estimated by measurement
- 1.35 s [1.08 – 1.35]

Heuristic Rules for adding M’s

- Basic idea: M before every chunk in the method that must be recalled from long-term memory
- Insert M’s before each K & P
 - K -> MK
 - P -> MP (if P points at a command, not an argument)
- Delete M’s in typed chunks
 - MK MK ... MK -> M KK ... K if K’s form a command name, single text string, or number
- Delete anticipated M’s
 - x M y -> x y if x fully anticipates y
 - e.g., point-and-click is a chunk, so PMK -> PK

Example: Deleting a Word

- Shift-click selection
 - M
 - P [start of word]
 - K [click]
 - M
 - P [end of word]
 - K [shift]
 - K [click]
 - H [to keyboard]
 - M
 - K [Del]
 - Total: 3M + 2P + 4K = 7.37 sec

- Del key N times
 - M
 - P [start of word]
 - K [click]
 - M
 - K [Del]
 - x n [length of word]
 - Total: 2M + P + (n+1)K = 4.08 + 0.28n sec
Comparing designs & methods
Parametric analysis

Only expert users doing routine (well-learned) tasks
Only measures efficiency
- Not learnability, memorability, errors, etc.
Ignores
- errors (methods must be error-free)
- parallel action (shift-click)
- mental workload (e.g. attention & WM limits)
- planning & problem solving (how does user select the method?)
- fatigue

Goals
Operators
Methods
Selection rules

Goals
- Goal: delete text (n chars long)
 - Select: method 1 if n > 10
 - method 2 if n < 10
 - Method 1: Goal: highlight text & delete
 - Goal: highlight text
 - Point
 - Click
 - Method 2: Goal: delete n chars
 ...
NGOMSL

- "Natural GOMS language"
 - formal language with restricted English syntax
- Addresses gaps in KLM modeling
 - learning time measured by the \# of NGOMSL statements
 - working memory use modeled by Retain and Recall statements
 - no errors or problem solving

CPM-GOMS

- CPM-GOMS models parallel operations
 - e.g. point & shift-click
- Uses parallel cognitive model
 - each processor is serial
 - different processors run in parallel

Critical Path Determines Time

- Method for goal: Move text
 - Step 1. Accomplish goal: Cut text.
 - Step 2. Accomplish goal: Paste text.
 - Step 3. Return with goal accomplished.
- Method for goal: Cut text
 - Step 1. Accomplish goal: Highlight text.
 - Step 2. Retain that the command is COPY, and accomplish goal: Issue a command.
 - Step 3. Return with goal accomplished.
- Method for goal: Paste text
 - Step 1. Accomplish goal: Position cursor at insertion point.
 - Step 2. Retain that the command is PASTE, and accomplish goal: Issue a command.
 - Step 3. Return with goal accomplished.