
1

Fall 2005 6.831 UI Design and Implementation 1

���������	
���
���
��

2

Fall 2005 6.831 UI Design and Implementation 2

�������������������������

Suggested by Ryan Damico

Today’s candidate for the Hall of Shame is this entry form from the 1800Flowers web site. The purpose of the
form is to enter a message for a greeting card that will accompany a delivered flower arrangement.

Let’s do a little heuristic evaluation of this form:

Major: The 210 character limit is well justified, but hard for a user to check. Suggest a dynamic %-done bar
showing how much of the quota you’ve used. (error prevention, flexibility & efficiency)

Major: special symbols like & is vague. What about asterisk and hyphen – are those special too? What am I
allowed to use, exactly? Suggest highlighting illegal characters, or beeping and not allowing them to be
inserted. (error prevention)

Cosmetic: the underscores in the Greeting Type drop-down menu look like technical identifiers, and some
even look mispelled because they’ve omitted other punctuation. Bosss_Day? (Heuristic: match the real world)

Major: how does Greeting Type affect card? (visibility, help & documentation)

Cosmetic: the To:, Message,: and From: captions are not likely to align with what the user types (aesthetic &
minimalist design)

3

Fall 2005 6.831 UI Design and Implementation 3

�����������
��

� Design principles
� Frame animation
� Palette animation
� Property animation
� Pacing & path

Today we’re going to talk about using animation in graphical user interfaces.

Some might say, based on bad experiences with the Web, that animation has no place in a usable interface.
Indeed, the <blink> tag originally introduced by the Netscape browser was an abomination. And many
advertisements on the web site use animation to grab your attention, which distracts you from what you’re
really trying to do and makes you annoyed. So animation has gotten a bad rap in UI.

Others complain that animation is just eye candy – it makes interfaces prettier, but that’s all.

But neither of those viewpoints is completely fair. Used judiciously, animation can make an important
contribution to the usability of an interface. And it’s not as hard to implement as you might think. We’ll talk
about both design issues and implementation today.

4

Fall 2005 6.831 UI Design and Implementation 4

 �����
���
���

� Purpose of application
� Games, simulations, tutorials, video players

� Feedback
� Visualizing changes not made by user
� Keeping the user oriented during transitions
� Displaying progress

� Help
� �Animated icons�
� Moving mouse around to show how to use UI

� Reinforcing illusion of direct manipulation
� Aesthetic appeal and engagement

Why would we want to use animation in a GUI?

First, it might be an essential part of the application itself. Games and educational simulations generally have
to use animation to be realistic and engaging, because they’re simulating a virtual world in which time passes
and things move. And a video player would be pointless if the moving pictures didn’t actually move.

Even if the application’s main purpose isn’t animation, animation can enhance feedback, by drawing attention
to and explaining changes in the display that would otherwise be hard to follow and understand. One example
is a change that was not made by the user – due to actions by other users in a multi-user application, or actions
by the software itself. A move made on a checkerboard by another player is an example of a change that
might be animated.

Another change is a major transition in the viewpoint of the display, because a sudden drastic shift can
disorient the user. What happened? Which direction did I go? How would I get back to where I was before?
Scrolling around a large space, or zooming in or out, are examples of these transitions. Problems tend to occur
not when the transition is under direct manipulation control (e.g. dragging a scrollbar thumb), but rather when
it happens abruptly due to a button press (Page Up) or other action (Zoom pulldown menu, hyperlink press,
another user or computer action, etc.) Animating the transition as if the user had done it with fast direct
manipulation helps the user stay oriented.

Animation can also be used for progress feedback, to show that something is still happening. Here, the
animation basically reassures the user that the program hasn’t crashed. The “throbber” on a web browser (that
spinning earth or stomping Mozilla or whatever) is an example of this kind of animation; it’s probably the
most trivial kind to do.

Animation is also used for help. There was some research back in the early 90s on animated toolbar icons,
which showed a little movie of how the tool worked when you hovered over with your mouse (Baecker, Small
& Mander, “Bringing Icons to Life”, 1991). Documentation and tutorials can also demonstrate how to use the
interface by actually moving the mouse pointer around. (Java has support for this in the java.awt.Robot class.)

Animation also has some subjective and perceptual effects (we’re getting closer to the eye candy argument
now, but subjective satisfaction matters too). Animation makes interfaces more lively and engaging, more
appealing. It also reinforces the illusion of the physical simulation provided by direct manipulation. If, rather
than teleporting from one place to another, objects in the GUI world have to move through the intervening
space, then it looks more physical.

5

Fall 2005 6.831 UI Design and Implementation 5

��
���
�����������!����"�����

� Existing events are often enough to
provide incremental screen changes
�User�s mouse events drive scrolling
�Program events can drive a progress bar
� But bursty or slow events may need animation

� Short distances and short time periods
� time < 100 ms
� distance < width of the moving object

Fortunately, it turns out that in many cases, you don’t need to do anything special to obtain the benefits of
animation.

Many event-driven parts of a GUI are already incremental. If the user is dragging the scrollbar thumb, then
they’re basically animating the interface themselves – you don’t need to do anything special. (Although we’ll
discuss something called motion blur on the next page that may be worth adding to enhance the visual effect.)
Similarly, backend events (like bytes read from a file or files copied) may be able to make progress feedback
appear animated, simply by coming often enough so that the progress bar fills in smoothly. But if the backend
events are bursty or have long gaps between them, you may need to supplement with animation. That’s why
web browsers have an animated throbber – because sometimes network connections just sit there generating
no backend events to drive the progress.

If feedback is very brief, or a transition very short, then animation is likewise unnecessary, because it will be
lost on the user anyway. Some good rules of thumb are shown above.

6

Fall 2005 6.831 UI Design and Implementation 6

#��
$��%�
��
����

� Frame rate > 20 frames per second
� 10 fps is convincing but looks jerky
� Film is 24 fps, TV (NTSC) 30 fps

� Big jumps are disruptive
� Use motion blur if frame rate can�t keep up with object speed
� Rule of thumb: if object moves more than its width between frames,

fill in with motion blur (smear of color or multiple images)
� Animation in direct manipulation
� Solidity (motion blur, fading in/out)
� Anticipation (wind up before starting to move)
� Slow-in/slow-out
� Follow through (wiggle back and forth when stopping)

� Keep feedback animation short
� Many users will wait for it to stop before continuing

� Use animation sparingly
� Constant motion is distracting and agitating

Here are some basic design principles for animation in a GUI.

First, the frame rate should be at least 20 frames per second – i.e., the animation should make an incremental
change at least 20 times per second.

Big jumps are disruptive, so pay attention when you’re using low frame rates with high object speeds. In the
real world, an object doesn’t disappear from one place and reappear in another – it passes through the
intervening points, and even if it moves too fast for us to focus on it, it leaves an impression of its path our
visual system – a smear. That smear is called motion blur. If an object is moving so fast that it moves more
than its own width between frames, leaving a visible gap between subsequent images of the object, then you
should consider filling in the gap with simulated motion blur. Two common ways to do it: (1) a smear of the
object’s color, and (2) simply drawing multiple overlapping images of the object. Another solution is to crank
up the frame rate, if that’s possible

There are several useful ways to use animation to enhance the illusion of direct manipulation (Chang & Ungar,
“Animation: From Cartoons to the User Interface”, UIST ’93), which were originally drawn from the
experience of Disney cartoonists. The principle of solidity says that the animated behavior of an object should
give clues about its squishiness – so a ball, when it strikes the ground, should flatten out into an ellipse before
rebounding. Most objects in GUIs are rigid, so the solidity principle is mostly about preventing high-speed
GUI objects from appearing to teleport across the screen (using motion blur), and having them fade into and
out of view rather than appearing and disappearing abruptly.

Anticipation means that an object winds up a bit (moving backwards to get more leverage) before starting a
motion. The wind-up draws the user’s attention, and resembles what animate creatures in the real world do
when they move. Slow-in, slow-out describes how a realistic animation should be paced – rather than keeping
a constant speed throughout, the object should accelerate up to a cruising speed, and then decelerate to a stop.
Finally, follow-through says that objects should wiggle back and forth a bit when they finish a motion, to
expend the remaining kinetic energy of the motion.

Feedback animations should be kept short. Many users will wait for it to stop before continuing, so there’s a
tradeoff between the duration of the animation and the efficiency of the interface. Don’t block user control –
allow the user to start on their action while the animation is still going on.

Finally, use animation judiciously. As we know from ads on web sites, constant motion is distracting and
agitating.

7

Fall 2005 6.831 UI Design and Implementation 7

%
&���'����
���������
���
��

� Frame animation
�Animated GIF
�Graphics.drawImage(�, this) automatically

animates GIFs by calling this.repaint()
when it�s time to show the next frame

Now let’s focus on how to implement animation, starting with animations in the pixel model.

Frame animation is probably the easiest kind of animation. It consists of a sequence of images, each a little
different from the previous, that are displayed at regular intervals. Most of the moving pictures you know --
movies, television, digital video – work this way. Animated GIFs are an easy way to put frame animation into
a GUI. (One drawback is that GIFs have only 8-bit color resolution; if you need richer color, you may have to
do it yourself by displaying a sequence of PNGs, or switch to a video player that supports AVI or MPEG – but
video players are much harder to integrate.) Java has built-in support for animated GIFs. You just use
Graphics.drawImage() to draw the animated GIF during your paint method, passing your component as the
ImageObserver. Java will automatically set a timer for the GIF’s frame rate and call repaint() on your
component when the next frame needs to be displayed.

8

Fall 2005 6.831 UI Design and Implementation 8

%
&���'����
�%���������
���
��

� Palette animation
�Split color index into layers
�Double-buffering by making only one layer

visible while drawing into the other
�Objects can be moved around in one layer

without need to redraw underlying layer
�Fade-in by interpolating colors between

layers

Palette animation (aka colormap animation) works only with palette-based pixel models. This kind of pixel
model typically uses 8 bits per pixel (the GIF file format is actually a good example of a palette pixel model).
Each 8-bit pixel is an index into a 256-entry palette (each entry has a 24-bit RGB value). Graphics hardware
does the translation, looking up each pixel’s 8-bit color index in the palette to find its true color. Any colors
can be in the palette -- doesn’t have to be 256 distinct colors.

The principle of palette animation is that the palette can be changed very rapidly – replacing just 256 entries,
rather than thousands or millions of pixels on the screen. As a simple example: you can make the entire screen
fade to black by animating the palette colors from their original values down to (0,0,0).

To animate only certain objects, not the entire screen, you split the color index into separate bitfields, each
representing a different layer. For example, suppose we had two 4-bit layers, aaaa and bbbb. Then just
changing the palette can make whole layers appear and disappear:

show only layer A: [aaaa bbbb] => color of aaaa

show only layer B: [aaaa bbbb] => color of bbbb

This lets you do double-buffering in place (not in separate memory): you draw in the layer that’s not showing
(i.e., you change only the 4 bits of each pixel corresponding to the invisible layer), then very quickly make it
appear by updating the palette.

You can also stack the layers on top of each other, and reserve a color (say 0) in each layer to mean
transparent, so that the layer below shows through:

[aaaa 0000] => color of aaaa

[aaaa bbbb] => color of bbbb (if bbbb != 000)

This lets you move objects around in the upper layer and simply erase pixels when the object moves – e.g., set
the upper 4 bits to the transparent color. You don’t have to redraw the damaged region in the lower layer,
saving a lot of repainting.

Palette animation comes with a significant cost in available colors for drawing (i.e., # of distinct colors on the
screen at the same time). It only makes sense if the palette is small relative to the screen size, and after you
split it into layers and introduce a transparent color, you’re left with only a handful of colors for your actual
drawing. Palette animation isn’t used much today – processors are much faster, and the sacrifice in color
depth isn’t worth the benefit.

9

Fall 2005 6.831 UI Design and Implementation 9

%
&��(����)��'����
�*+�����������������

� Approach
� Set a periodic timer for 1/frame rate
� Repaint every timer tick
� Paint method uses current clock time to compute

positions/sizes/etc to draw animated objects
� Stop timer when animation complete or interrupted

� May be hard to achieve smooth animation
� Event-handling may be bursty
� Getting from timer tick to paint method requires

two passes through event queue
� Processing user input events has priority over

animation repaints

Suppose you can’t use animated GIFs. How do you animate changes to a pixel model or stroke model output?

When animation is merely used a feedback or help effect in an application that otherwise isn’t concerned with
animation, the best solution is the event loop approach. The basic idea is to use a timer object (such as
javax.swing.Timer), which delivers periodic events to the GUI event queue. Set the timer interval to the
desired frame rate (e.g. 50 msec for 20 fps). Every time the timer fires, use the current clock time to determine
where to redraw the objects. Stop the timer when the animation is done.

This technique integrates very well with an existing GUI application, because automatic-redraw and input-
handling support of the GUI toolkit continue to be supported even while the

But this is also the main drawback of the event-loop approach. Event handling is often bursty, and user input
events generally get priority over repaints, so the animation may be jerky if the user is (e.g.) typing or waving
the mouse around. Also, getting from the timer tick (when the timer fires) to actually updating the screen
(painting the next step of the animation) requires two passes through the event queue: first the timer event is
put on the queue, and then it’s handled merely by putting a repaint event on the queue.

So animation has low priority in an implementation like this – but that’s appropriate if it’s just used for
feedback.

10

Fall 2005 6.831 UI Design and Implementation 10

%
&��(����)��'����
�

��
���
����������������

� Tight animation loop approach
�Repeat as fast as possible,
�Check and handle input events
� Paint everything for current clock time
� (Optional: sleep a bit to yield to other

processes)

Applications that demand smooth, high frame-rate animations often forgo the standard GUI event loop and
write their own tight animation loop. This custom loop can give greater priority to the animation, and it can
avoid overhead like managing damage rectangles by just assuming that most of the screen will have to be
repainted every frame. It can also maximize the frame rate for the user’s processor, simply by running at top
speed, without having to configure a timer with a fixed frame rate.

A tight animation loop like this often used for games and simulations, but it doesn’t mesh well with the
component model of a standard UI toolkit, which expects you to use their event loop and automatic redraw.
So programs that use tight custom animation loops often do not use standard widgets from a toolkit.

Don’t try to mix these two approaches. In particular, don’t try to implement animated feedback by putting a
tight animation loop inside an event handler. (Why not? What will happen?)

11

Fall 2005 6.831 UI Design and Implementation 11

,���������' ����
�%����������
���
��

� Set periodic timer
� Every timer tick, update component

properties as a function of current clock
time
�Position, size, color, opacity

The component model enables a more modular approach to animation. Rather than putting animation code
into the paint method, we can simply update the changing properties of the component (position, size, etc.) on
every timer tick. So the animation effect can be entirely decoupled from the component itself (as long as the
component exposes properties for all the visual effects we might need to animate). This technique is called
property animation.

12

Fall 2005 6.831 UI Design and Implementation 12

%��
�$�����%���

� Pacing function maps time t to
parameter s [0,1]
� Linear: s = t / duration
�Slow-in/slow-out: s ~ atan(t)

� Path function maps s to property value v
� Linear: (x,y) = (1-s)*(x0,y0) + s*(x1,y1)
�Quadratic Bezier curve:

(x,y) = (1-s)^2*(x0,y0) + 2s(1-s)(x1,y1) +
s^2(x2,y2)
�Color: HSV vs. RGB

Pacing and path are relevant to animating both stroke and component models.

Pacing concerns how the animation evolves over time. It’s a function that maps clock time to an abstract
parameter, usually 0 to 1, representing the completeness of the animation (0% to 100%). Pacing is how you
can implement slow-in/slow-out. Slow-in/slow-out is done with a sigmoid (S-shaped) function. The
arctangent is a good, easy sigmoid; so is 1/(1+e^-x). Note that you have to tweak the domain and range of
these functions so that the desired time domain (0 to the duration of the animation) maps to the desired s-
parameter range (typically 0..1). Normally arctangent maps the domain [–PI/2, PI/2] to the range [-1, 1].

Path describes how the animated property moves through its value space. For position, this is easy – it’s the
curve of points that the position traces out. If you want to add some visual appeal to a moving object, make it
move through an arc. A quadratic Bezier curve has this effect and is trivial to implement – you just need a
control point between the start point and end point. (The control point pulls the curve away from the straight
line between the endpoints – to be precise, the curve is tangent at each endpoint to the line that connects the
endpoint with the control point.)

For 1-dimensional properties, like size or opacity (alpha value), it’s just a starting point and an ending point.
For multidimensional properties like color, you’ll want to think about what color space the path should go
through, and whether you want the path to be simply a line in that color space or something more complicated.
For color animation, it may be more effective to animate in HSV space.

13

Fall 2005 6.831 UI Design and Implementation 13

#�������
+����
���
���
��-�'�

<Rectangle Fill="Black"
Height="100px" Width="100px"
Canvas.Bottom="5px�
Canvas.Right="5px">

<Rectangle.Height>
<LengthAnimationCollection>

<LengthAnimation From="100" To="50"
Duration="3�

RepeatDuration="Indefinite" />
</LengthAnimationCollection>

</Rectangle.Height>
</Rectangle>

Windows Presentation Framework (a new GUI toolkit that will be included with Windows Vista) supports
declarative specification of property animations like these. Here’s a bit of XAML code (WPF’s declarative
user interface language) that describes a rectangle whose height will animate between 100 and 50 over the
course of 3 seconds.

For more about WPF, see

http://msdn.microsoft.com/windowsvista/default.aspx?pull=/library/en-us/dnlong/html/introwpf.asp

