
1

Fall 2005 6.831 UI Design and Implementation 1

����������	�
������������

2

Fall 2005 6.831 UI Design and Implementation 2

�������������� �������� ��

Suggested by Vishy Venugopalan

This Flash-driven web site is the Museum of Modern Art’s Workspheres exhibition, a
collection of objects related to the modern workplace. This is its main menu: an array of
identical icons. Mousing over any icon makes its label appear (the yellow note shown), and
clicking brings up a picture of the object.

Clearly there’s a metaphor in play here: the interface represents a wall covered with Post-it
notes, and you can zoom in on any one of them.

We can praise this site for at least one reason: incredible simplicity. The designer of this
site was clearly striving for aesthetic appeal. Nothing unnecessary was included. Note the
use of whitespace to group the list of categories on the right, and the simple heading
highlight that gives a clue to the function of the list (clicking on a category name highlights
all the icons in that category).

Unfortunately, too much that was necessary was left out. Without any visible
differentiation between the icons, finding something requires a lot of mouse waving.
“Mystery navigation” was the term used by Vishy Venugopalan, who nominated this
candidate for the UI Hall of Shame several years ago. It’s hard enough to skim the display
for interesting objects to look at. But imagine trying to find an object you’ve seen before.
It’s like that old card game Concentration, demanding too much recall from the user, rather
than offering easy opportunities to recognize what you’re looking for.

Frankly, if real Post-it notes were arranged on a wall like this, you’d probably have just as
much trouble navigating it. So the choice of metaphor may be the essence of the problem.

3

Fall 2005 6.831 UI Design and Implementation 3

�������������� �!�������"

Suggested by Adam Champy

This is the home page for Movado, a company that makes expensive, stylish watches. The
little white dots at the top of the window are menu options. If you watched the opening
animation that precedes this screen, you’d see each menu label appear briefly over each dot.
But if you skipped over the intro, you wouldn’t see that, and you may not even realize that a
menu is hiding up there under those stylish white dots.

When you mouse over a dot, you actually have to wait for a cute little animation (a watch
hand sweeping around the dot) before the menu label appears. Each little animation takes 2
seconds. So scanning the entire menu to look at all the options takes 16 seconds!

Clearly this is even worse than MOMA’s approach, since it starts with an invisible menu
interface and makes it inefficient to boot. More tellingly, MOMA only cares about your
eyeballs, but Movado actually wants to sell you a watch. If you can’t figure out their menu,
or lose patience with it, you may be headed elsewhere.

One lesson you might draw from these examples is that Flash animation is bad, but that’s
too simplistic. Flash is a powerful tool that can be used for good or ill.

A better lesson might be that aesthetic appeal does not automatically confer usability.
Effective graphic design is an important element of usability, but it isn’t the whole story by
any means.

4

Fall 2005 6.831 UI Design and Implementation 4

��#�����������
��#�
������������

� Simplicity
� Contrast
� White space
� Balance
� Alignment

Today, we’re going to look at some specific guidelines for graphic design. These guidelines
are drawn from the excellent book Designing Visual Interfaces by Kevin Mullet and Darrell
Sano (Prentice-Hall, 1995). Mullet & Sano’s book predates the Web, but the principles it
describes are timeless and relevant to any visual medium.

Another excellent book is Edward Tufte’s The Visual Display of Quantitative Information.
Some of the examples in this lecture are inspired by Tufte.

5

Fall 2005 6.831 UI Design and Implementation 5

��� �������

� �Perfection is achieved not when there is
nothing more to add, but when there is
nothing left to take away.� (Antoine de St-
Exupery)
� �Simplicity does not mean the absence of any

decor� It only means that the decor should
belong intimately to the design proper, and
that anything foreign to it should be taken
away.� (Paul Jacques Grillo)
� �Keep it simple, stupid.� (KISS)
� �Less is more.�
� �When in doubt, leave it out.�

Okay, we’ll shout some slogans at you now. You’ve probably heard some of these before.
What you should take from these slogans is that designing for simplicity is a process of
elimination, not accretion. Simplicity is in constant tension with task analysis, information
preconditions, and other design guidelines, which might otherwise encourage you to pile
more and more elements into a design, “just in case.” Simplicity forces you to have a good
reason for everything you add, and to take away anything that can’t survive hard scrutiny.

6

Fall 2005 6.831 UI Design and Implementation 6

$����%����������� �������	�&�#������

� Remove inessential elements

Here are three ways to make a design simpler.

Reduction means that you eliminate whatever isn’t necessary. This technique has three
steps: (1) decide what essentially needs to be conveyed by the design; (2) critically examine
every element (label, control, color, font, line weight) to decide whether it serves an
essential purpose; (3) remove it if it isn’t essential. Even if it seems essential, try removing
it anyway, to see if the design falls apart.

Icons demonstrate the principle of reduction well. A photograph of a pair of scissors can’t
possibly work as a 32x32 pixel icon; instead, it has to be a carefully-drawn picture which
includes the bare minimum of details that are essential to scissors: two lines for the blades,
two loops for the handles. The standard US Department of Transportation symbol for
handicapped access is likewise a marvel of reduction. No element remains that can be
removed from it without destroying its meaning.

We’ve already discussed the minimalism of Google and the Tivo remote in earlier classes.
Here, the question is about functionality. Both Google and Tivo aggressively removed
functions from their primary interfaces.

7

Fall 2005 6.831 UI Design and Implementation 7

$����%����������� �������	�&���������

� Use a regular pattern
� Limit inessential variation among

elements

For the essential elements that remain, consider how you can minimize the unnecessary
differences between them with regularity. Use the same font, color, line width,
dimensions, orientation for multiple elements. Irregularities in your design will be
magnified in the user’s eyes and assigned meaning and significance. Conversely, if your
design is mostly regular, the elements that you do want to highlight will stand out better.

PowerPoint’s Text Layouts menu shows both reduction (minimalist icons representing each
layout) and regularity. Titles and bullet lists are shown the same way.

8

Fall 2005 6.831 UI Design and Implementation 8

$����%����������� �������	����'��(����

� Combine elements for leverage
�Find a way for one element to play multiple

roles

title bar

scrollbar thumb

help prompt

Finally, you can combine elements, making them serve multiple roles in the design. The
desktop interface has a number of good examples of this kind of design. For example, the
“thumb” in a scroll bar actually serves three roles. It affords dragging, indicates the position
of the scroll window relative to the entire document, and indicates the fraction of the
document displayed in the scroll window. Similarly, a window’s title bar plays several
roles: label, dragging handle, window activation indicator, and location for window control
buttons. In the classic Mac interface, in fact, even the activation indicator played two roles.
When the window was activated, closely spaced horizontal lines filled the title bar, giving it
a perceived affordance for dragging.

9

Fall 2005 6.831 UI Design and Implementation 9

)��������*�+������+����'���

� Contrast encodes information along
visual dimensions

sizevalue hue orientationtexture shape position

Contrast refers to perceivable differences along a visual dimension, such as size or color.
Contrast is the irregularity in a design that communicates information or makes elements
stand out. Simplicity says we should eliminate unimportant differences. Once we’ve
decided that a difference is important, however, we should choose the dimension and degree
of contrast in such a way that the difference is salient, easily perceptible, and appropriate to
the task.

Crucial to this decision is an understanding of the different visual dimensions. Jacques
Bertin developed a theory of visual variables that is particularly useful here (Bertin,
Graphics and Graphics Information Processing, 1989). The seven visual variables
identified by Bertin are shown above. Bertin called these dimensions retinal variables, in
fact, because they can be compared effortlessly without additional cognitive processing, as
if the retina were doing all the work. In terms of the model human processor abstraction,
differences along these dimensions can be detected by the Perceptual Processor. Comparing
numbers, on the other hand, would require the participation of the Cognitive Processor.

Each column in this display varies along only one of the seven variables. Most of the
variables need no explanation, except perhaps for hue and value. Hue is pure color; value
is the brightness or luminance of color. (Figure after Mullet & Sano, p. 54).

10

Fall 2005 6.831 UI Design and Implementation 10

)�����������������+������+����'���

� Scale = kinds of comparisons possible
� Nominal (=)
� All variables

� Ordered (<, >)
� Ordered: position, size, value, texture granularity
� Not ordered: orientation, hue, shape

� Quantitative (amount of difference)
� Quantitative: position, size
� Not quantitative: value, texture, orientation, hue, shape

� Length = number of distinguishable levels
� Shape is very long (infinite variety)
� Position is long and fine-grained
� Orientation is very short (~ 4 levels)
� Other variables are in between (~ 10 levels)

The visual variables are used for communication, by encoding data and drawing distinctions between visual
elements. But the visual variables have different characteristics. Before you choose a visual variable to
express some distinction, you should make sure that the visual variable’s properties match your
communication. For example, you could display a temperature using any of the dimensions: position on a
scale, length of a bar, color of an indicator, or shape of an icon (a happy sun or a chilly icicle). Your choice of
visual variable will strongly affect how your users will be able to perceive and use the displayed data.

Two characteristics of visual variables are the kind of scale and the length of the scale.

A nominal scale is just a list of categories. Only comparison for equality is supported by a nominal scale.
Different values have no ordering relationship. The shape variable is purely nominal. Hue is also purely
nominal, at least as a perceptual variable. Although the wavelength of light assigns an ordering to colors, the
human perceptual system takes no notice of it. Likewise, there may be some cultural ordering imposed on hue
(red is “hotter” than blue), but it’s weak, doesn’t relate all the hues, and is processed at a higher cognitive
level.

An ordered scale adds an ordering to the values of the variable. Position, size, value, and to some extent
texture (with respect to the grain size of the texture) are all ordered.

With a quantitative variable, you can perceive the amount of difference in the ordering. Position is
quantitative. You can look at two points on a graph and tell that one is twice as high as the other. Size is also
quantitative, but note that we are far better at perceiving quantitative differences in one dimension (i.e., length)
than in two dimensions (area). Value is not quantitative; we can’t easily perceive that one shade is twice as
dark as another shade.

The length of a variable is the number of distinguishable values that can be perceived. We can recognize a
nearly infinite variety of shapes, so the shape variable is very long, but purely nominal. Position is also long,
and particularly fine-grained. Orientation, by contrast, is very short; only a handful of different orientations
can be perceived in a display before confusion starts to set in. The other variables lie somewhere in between,
with roughly 10 useful levels of distinction, although size and color are somewhat longer than value and
texture.

11

Fall 2005 6.831 UI Design and Implementation 11

,��������

� Recall the spotlight metaphor
�Attention spotlight moves serially from one

input channel to another
�All stimuli within spotlighted channel are

processed in parallel

� Input channel = one or more visual
variables
� e.g., position, hue

12

Fall 2005 6.831 UI Design and Implementation 12

�������!���

� Selective perception: can attention be
focused on one value of the variable,
excluding other variables and values?
�Selective: position, size, orientation, hue,

value, texture
�Not selective: shape

Selectivity is the degree to which a single value of the variable can be selected from the
entire visual field. Most variables are selective: e.g., you can locate green objects at a
glance, or tiny objects. Shape, however, is not selective in general. It’s hard to pick out
triangles amidst a sea of rectangles.

13

N

N

N N

N

N

N

N
N

N

NZ

Z
Z

Z

Z

Z

Z
Z

Z
K

K
K

K
K

K

K

K

KK

K

M
M

M

M M

M

M

M

M
M

M

Ask yourself these questions:

- find all the letters on the left half of the page (position)

- find all the red letters (hue)

- find all the K’s (shape)

Which of these questions felt easy to answer, and which felt hard? The easy ones were
selective visual variables.

14

Fall 2005 6.831 UI Design and Implementation 14

,��������!���

� Associative perception: can variable be
ignored when looking at other
variables?
�Associative: position, hue, value, texture,

shape, orientation
�Not associative: size, value
� Small size and low value interfere with ability to

perceive hue, value, texture, and shape

There are two ways that your choice of visual variables can affect the user’s ability to attend
to them.

Associativity refers to how easy it is to ignore the variable, letting all of the distinctions
along that dimension disappear. Variables with poor associativity interfere with the
perception of other visual dimensions. In particular, size and value are dissociative, since
tiny or faint objects are hard to make out.

15

N

N

N N

N

N

N

N
N

N

NZ

Z
Z

Z

Z
Z

Z

Z

Z
K

K
K

K
K

K

K

K

KK

K

M M

M

M M

M

M
M

M
M

M

Notice that when we use size as a visual variable as well, the shapes and hues of small
objects become harder to detect.

16

Fall 2005 6.831 UI Design and Implementation 16

$����%��������)�������

� Choose appropriate visual variables
� Use as much length as possible
� Sharpen distinctions for easier

perception
�Multiplicative scaling, not additive
�Redundant coding where needed
�Cartoonish exaggeration where needed

� Use the �squint test�

Once you’ve decided that a contrast is essential in your interface, choose the right visual variable to
represent it, keeping in mind the data you’re trying to communicate and the task users need to do with the data.
For example, consider a text content hierarchy: title, chapter, section, body text, footnote. The data requires an
ordered visual variable; a purely nominal variable like shape (e.g., font family) would not by itself be able to
communicate the hierarchy ordering. If each element must communicate multiple independent dimensions of
data at once (e.g., a graph that uses size, position, and color of points to encode different data variables), then
you need to think about the effects of associativity and selectivity.

Once you’ve chosen a variable, use as much of the length of the variable as you can. Determine the minimum
and maximum value you can use, and exploit the whole range. In the interests of simplicity, you should
minimize the number of distinct values you use. But once you’ve settled on N levels, distribute those N levels
as widely across the variable as is reasonable. For position, this means using the full width of the window; for
size, it means using the smallest and the largest feasible sizes.

Choose variable values in such a way as to make sharp, easily perceptible distinctions between them.
Multiplicative scaling (e.g., size growing by a factor of 1.5 or 2 at each successive level) is makes sharper
distinctions than additive scaling (e.g., adding 5 pixels at each successive level). You can also use redundant
coding, in several visual variables, to enhance important distinctions further. The title of a document is not
only larger (size), but it’s also centered (position), bold (value), and maybe a distinct color as well.
Exaggerated differences can be useful, particularly when you’re drawing icons: like a cartoonist, you have to
give objects exaggerated proportions to make them easily recognizable.

The squint test is a technique that simulates early visual processing, so you can see whether the contrasts
you’ve tried to establish are readily apparent. Close one eye and squint the other, to disrupt your focus.
Whatever distinctions you can still make out will be visible “at a glance.”

17

Fall 2005 6.831 UI Design and Implementation 17

)�������+������+����'�����������������

Let’s look at an email inbox to see how data associated with email messages are encoded into visual variables
in the display. Here are the data fields shown above, in columns from left to right:
Spam flag: nominal, 2 levels (spam or not)
Subject: nominal (but can be ordered alphabetically), infinite (but maybe only ~100 are active)
Sender: nominal (but can be ordered alphabetically), infinite (but maybe ~100 people you know + everybody
else are useful simplifications)
Unread flag: nominal, 2 levels (read or unread)
Date: quantitative (but maybe ordered is all that matters), infinite (but maybe only ~10 levels matter: today,
this week, this month, this year, older)

This information is redundantly coded into visual variables in the display shown above, for better contrast.
First, all the fields use position as a variable, since each is assigned to a different column. In addition:
Spam: shape, hue, value, size (big colorful icon vs. little dot)
Subject: shape
Sender: shape
Unread: shape, hue, value, size (big green dot vs. little gray dot) and value of entire line (boldface vs. non)
Date: shape, size (today is shorter than earlier dates), position (list is sorted by date)

Exercise: try designing a visualization with these encodings instead:
Spam: size (this takes advantage of dissociativity)
Subject: shape
Sender: position
Unread: value
Date: position

18

Fall 2005 6.831 UI Design and Implementation 18

���������������� ��������������

Here’s another example showing how redundant encoding can make an information display
easier to scan and easier to use. Search engine results are basically just database records,
but they aren’t rendered in a simplistic caption/field display like the one shown on top.
Instead, they use rich visual variables – and no field labels! – to enhance the contrast among
the items. Page titles convey the most information, so they use size, hue, and value
(brightness), plus a little shape (the underline). The summary is in black for good
readability, and the URL and size are in green to bracket the summary.

Take a lesson from this: your program’s output displays do not have to be arranged like
input forms. When data is self-describing, like names and dates, let it describe itself. (This
is yet another example of the double duty technique for achieving greater simplicity – data
is acting as its own label.) And choose good visual variables to enhance the contrast of
information that the user needs to see at a glance.

19

Fall 2005 6.831 UI Design and Implementation 19

)�����������-�'���������������

Title
Heading
This is body text. It’s smaller than the heading, lighter in weight, and longer
in line length. We’ve also changed its shape to a serif font, because serifs
make small text easier to read. Redundant encoding produces an effective
contrast that makes it easy to scan the headings and distinguish headings from
body text.1

1This is a footnote. It’s even smaller, and positioned at the bottom of the page.

Figure 1. This is a caption, which is
smaller than body text, and set off by
position, centering, and line length.

Titles, headings, body text, figure captions, and footnotes show how contrast is used to
make articles easier to read. You can do this yourself when you’re writing papers and
documentation. Does this mean contrast should be maximized by using lots of different
fonts like Gothic and Bookman? No, for two reasons – contrast must be balanced against
simplicity, and text shape variations aren’t the best way to establish contrast.

20

Fall 2005 6.831 UI Design and Implementation 20

��� ��������!�.�)�������

min

25%

50%

75%

max

Tukey Tufte #1 Tufte #2

Conversely, here’s a case where simplicity is taken too far, and contrast suffers. Simplicity
and contrast seem to fight with each other. The standard Tukey box plot shows 5 different
statistics in a single figure. But it has unnecessary lines in it! Following the principle of
simplicity to its logical extreme, Edward Tufte proposed two simplifications of the box plot
which convey exactly the same information – but at a great cost in contrast. Try the squint
test on the Tukey plot, and on Tufte’s second design. What do you see?

21

Fall 2005 6.831 UI Design and Implementation 21

)��������-��'��� �

Source: Interface Hall of Shame

Here’s an example of too little contrast. It’s important to distinguish captions from text
fields, but in this design, most of the visual variables are the same for both:

- the position is very similar: the box around each caption and text field begins at the same
horizontal position. The text itself begins at different positions (left-justified vs. aligned),
but it isn’t a strong distinction, and some of the captions fill their column.

- the size is the same: captions and text fields fill the same column width

- the background hue is slightly different (yellow vs. white), but not easily differentiable by
the squint test

- the background value is the same (very bright)

- the foreground hue and value are the same (black, plain font)

- the orientation is the horizontal, because of course you have to read it.

The result is that it’s hard to scan this form. The form is also terribly crowded, which leads
us into our next topic…

22

Fall 2005 6.831 UI Design and Implementation 22

/ ���������

� Use white space for grouping, instead of
lines
� Use margins to draw eye around design
� Integrate figure and ground
�Object should be scaled proportionally to

its background

� Don�t crowd controls together
�Crowding creates spatial tension and

inhibits scanning

White space plays an essential role in composition. Screen real estate is at a premium in
many graphical user interfaces, so it’s a constant struggle to balance the need for white
space against a desire to pack information and controls into a display. But insufficient
white space can have serious side-effects, making a display more painful to look at and
much slower to scan.

Put margins around all your content. Labels and controls that pack tightly against the edge
of a window are much slower to scan. When an object is surrounded by white space, keep a
sense of proportion between the object (the figure) and its surroundings (ground). Don’t
crowd controls together, even if you’re grouping the controls. Crowding inhibits scanning,
and produces distracting effects when two lines (such as the edges of text fields) are too
close. Many UI toolkits unfortunately encourage this crowding by packing controls tightly
together by default, but Java Swing (at least) lets you add empty margins to your controls
that give them a chance to breathe.

23

Fall 2005 6.831 UI Design and Implementation 23

)��0#�#�������

Source: Mullet & Sano, p. 110

Here’s an example of an overcrowded dialog. The dialog has no margins around the edges;
the controls are tightly packed together; and lines are used for grouping where white
space would be more appropriate. Screen real estate isn’t terribly precious in a transient
dialog box.

The crowding leads to some bad perceptual effects. Lines appearing too close together –
such as the bottom of the Spacing text field and the group line that surround it – blend
together into a thicker, darker line, making a wart in the design. A few pixels of white
space between the lines would completely eliminate this problem.

24

Fall 2005 6.831 UI Design and Implementation 24

������/ �����������������1�����'���

Source: Mullet & Sano, p. 96

(a)

(b)

A particularly effective use of white space is to put labels in the left margin, where the
white space sets off and highlights them. In dialog box (a), you can’t scan the labels and
group names separately; they interfere with each other, as do the grouping lines. In the
redesigned dialog (b), the labels are now alone on the left, making them much easier to
scan.

For the same reason, you should put labels to the left of controls, rather than above.

25

Fall 2005 6.831 UI Design and Implementation 25

$��
�������-�������������
�������

� Gestalt principles explain how eye creates a whole
(gestalt) from parts

proximity similarity continuity

closure area symmetry

The power of white space for grouping derives from the Gestalt principle of proximity.
These principles, discovered in the 1920’s by the Gestalt school of psychologists, describe
how early visual processing groups elements in the visual field into larger wholes. Here are
the six principles identified by the Gestalt psychologists:

Proximity. Elements that are closer to each other are more likely to be grouped together.
You see four vertical columns of circles, because the circles are closer vertically than they
are horizontally.

Similarity. Elements with similar attributes are more likely to be grouped. You see four
rows of circles in the Similarity example, because the circles are more alike horizontally
than they are vertically.

Continuity. The eye expects to see a contour as a continuous object. You primarily
perceive the Continuity example above as two crossing lines, rather than as four lines
meeting at a point, or two right angles sharing a vertex.

Closure. The eye tends to perceive complete, closed figures, even when lines are missing.
We see a triangle in the center of the Closure example, even though its edges aren’t
complete.

Area. When two elements overlap, the smaller one will be interpreted as a figure in front of
the larger ground. So we tend to perceive the Area example as a small square in front of a
large square, rather than a large square with a hole cut in it.

Symmetry. The eye prefers explanations with greater symmetry. So the Symmetry
example is perceived as two overlapping squares, rather than three separate polygons.

26

Fall 2005 6.831 UI Design and Implementation 26

/ ����������,!��#��+������ ����

0

10

20

30

40

50

Winter Spring Summer Fall

0

10

20

30

40

50

Winter Spring Summer Fall

Here’s an interesting idea from Tufte: get rid of the grid rules on a standard bar chart, and
use whitespace to show where the grid lines would cross the bars. It’s much less noisy.
(But alas, impossible to do automatically in Excel.)

27

Fall 2005 6.831 UI Design and Implementation 27

2�������*���� � ����

� Choose an axis (usually vertical)
� Distribute elements equally around the

axis
�Equalize both mass and extent

Balance and symmetry are valuable tools in a designer’s toolkit. In graphic design,
symmetry rarely means exact, mirror-image equivalence. Instead, what we mean by
symmetry is more like balance: is there the same amount of stuff on each side of the axis of
symmetry. We measure “stuff” by both mass (quantity of nonwhite pixels) and extent (area
covered by those pixels); both mass and extent should be balanced.

28

Fall 2005 6.831 UI Design and Implementation 28

��� � �����34�� ���

An easy way to achieve balance is to simply center the elements of your display. That
automatically achieves balance around a vertical axis. If you look at Google’s home page,
you’ll see this kind of approach in action. In fact, only one element of the Google home
page breaks this symmetry: the stack of links for Advanced Search, Preferences, and
Language Tools on the right. This slight irregularity (a kind of contrast) actually helps
emphasize these links slightly.

29

Fall 2005 6.831 UI Design and Implementation 29

,����� ���

� Align labels on
left or right
� Align controls on

left and right
�Expand as needed

� Align text baselines

Finally, simplify your designs by aligning elements horizontally and vertically. Alignment contributes to the
simplicity of a design. Fewer alignment positions means a simpler design. The dialog box shown has totally
haphazard alignment, which makes it seem more complicated than it really is.

Labels (e.g. “Wait” and “Retry after”). There are two schools of thought about label alignment: one school
says that the left edges of labels should be aligned, and the other school says that their right edges (i.e., the
colon following each label) should be aligned. Both approaches work, and experimental studies haven’t found
any significant differences between them. Both approaches also fail when long labels and short labels are
used in the same display. You’ll get best results if you can make all your labels about the same size, or else
break long labels into multiple lines.

Controls (e.g., text fields, combo boxes, checkboxes). A column of controls should be aligned on both the left
and the right. Sometimes this seems unreasonable -- should a short date field be expanded to the same length
as a filename? It doesn’t hurt the date to be larger than necessary, except perhaps for reducing its perceived
affordance for receiving a date. You can also solve these kinds of problems by rearranging the display,
moving the date elsewhere, although be careful of disrupting your design’s functional grouping or the
expectations of your user.

So far we’ve only discussed left-to-right alignment. Vertically, you should ensure that labels and controls on
the same row share the same text baseline. Java Swing components are designed so that text baselines are
aligned if the components are centered vertically with respect to each other, but not if the components’ tops or
bottoms are aligned. Java AWT components are virtually impossible to align on their baselines. The dialog
shown here has baseline alignment problems, particularly among the controls in the last row: the checkbox
“Use custom editor”, the text field, and the Browse button.

30

Fall 2005 6.831 UI Design and Implementation 30

��#��,���3������!�

Source: Mullet & Sano, p. 165

A grid is one effective way to achieve both alignment and balance, nearly automatically.
Notice the four-column grid used in this dialog box (excluding the labels on the left). The
only deviation from the grid is the row of three command buttons at the bottom which are
nevertheless still balanced. In fact, their deviation from the grid helps to set them off,
despite the minimal white space separating them from the rest of the display.

One criticism of this dialog is false grouping. The controls for Size, All Caps, and
Superscript tend to adhere because their proximity, and likewise for the next two rows of
the display. This might be fixed by pushing the toggle buttons further to the right, to
occupy columns 3 and 4 instead of 2 and 3, but at the cost of some balance.

31

Fall 2005 6.831 UI Design and Implementation 31

)�����
��#������

� Limitations of human vision
� Color blindness, red-on-blue text, small blue text

� Use few colors
� Avoid saturated colors
� Be consistent and match expectations

We’ve already talked a lot about the limits of human color vision. In general, colors should
be used sparingly. An interface with many colors appears more complex, more cluttered,
and more distracting. Use only a handful of colors.

Background colors should establish a good contrast with the foreground. White is a good
choice, since it provides the most contrast; but it also produces bright displays, since our
computer displays emit light rather than reflecting it. Pale (desaturated) yellow and very
light gray are also good background colors.

In general, avoid strongly saturated colors – i.e., the colors around the top edge of the HSV
cone. Saturated colors can cause visual fatigue because the eye must keep refocusing on
different wavelengths. They also tend to saturate the viewer’s receptors (hence the name).
One study found that air traffic controllers who viewed strongly saturated green text on their
ATC interfaces for many hours had trouble seeing pink or red (the other end of the
red/green color channel) for up to 15 minutes after their shift was over.

Use less saturated versions instead, pushing them towards gray.

To sharpen contrasts, you can use opponent colors: red/green, blue/yellow. But keep color
blind users in mind; hue should not be the only way you establish the contrast. Both color-
blind and color-normal users will see the contrast better if you vary both hue and value.

Finally, match expectations. One of the problems with the Adaptec dialogs at the beginning
of this lecture was the use of red for OK. Red generally means stop, warning, error, or hot.
Green conventionally means go, or OK. Yellow means caution, or slow.

