
1

Fall 2005 6.831 UI Design and Implementation 1

���������	
�������������

2

Fall 2005 6.831 UI Design and Implementation 2

������������ �������� ��

Today’s candidate for the Hall of Fame & Shame is the Alt-Tab window switching
interface in Microsoft Windows. This interface has been copied by a number of desktop
systems, including KDE, Gnome, and even Mac OS X.

The first observation to make is that this interface is designed only for keyboard interaction.
Alt-Tab is the only way to make it appear; pressing Tab (or Shift-Tab) is the only way to
cycle through the choices. If you try to click on this window with the mouse, it vanishes.
The interface is weak on affordances, and gives the user little help in remembering how to
use it.

But that’s OK, because the Windows taskbar is the primary interface for window switching,
providing much better visibility and affordances. This Alt-Tab interface is designed as a
shortcut, and we should evaluate it as such.

It’s pleasantly simple, both in graphic design and in operation. Few graphical elements,
good alignment, good balance. The 3D border around the window name could probably be
omitted without any loss.

This interface is a mode (since pressing Tab is switching between windows rather than
inserting tabs into text), but it’s spring-loaded, happening only as long as the Alt button is
held down. This spring-loading also provides good dialog closure.

Is it efficient? A common error, when you’re tabbing quickly, is to overshoot your target
window. You can fix that by cycling around again, but that’s not as reversible as just
moving backwards with a mouse. (You can also back up by holding down Shift when you
press Tab, but that’s not well-communicated by this interface, and it’s tricky to negotiate
while you’re holding Alt down.)

3

Fall 2005 6.831 UI Design and Implementation 3

������������ �������� ��

For comparison, let’s look at the Exposé feature in Mac OS X. When you push F9 on a
Mac, it displays all the open windows – even hidden windows, or windows covered by other
windows – shrinking them as necessary so that they don’t overlap. Mousing over a window
displays its title, and clicking on a window brings that window to the front and ends the
Exposé mode, sending all the other windows back to their old sizes and locations.

Like Alt-Tab, Exposé is also a mode. Unlike Alt-Tab, however, it is not spring-loaded. It
depends instead on dramatic visual differences as a mode indicator – with its shrunken, tiled
windows, Exposé mode usually looks a lot different than the normal desktop.

To get out of Exposé mode without choosing a new window, you can press F9 again, or you
can click the window you were using before. That’s easier to discover and remember than
Alt-Tab’s mechanism – pressing Escape. When I use Alt-Tab, and then decide to abort it, I
often find myself cycling through all the windows trying to find my original window again.
Both interfaces support user control and freedom, but Exposé seems to make canceling
more efficient.
The representation of windows is much richer in Exposé than in Alt-Tab. Rather than Alt-
Tab’s icons (many of which are identical, when you have several documents open in the
same application), Exposé uses the window itself as its visual representation. That’s much
more in the spirit of direct manipulation. (A version of Alt-Tab included in Windows
Power Toys shows images of the windows themselves – try it!)

Let’s look at efficiency more deeply. Alt-Tab is a very linear interface – to pick an
arbitrary window out of the n windows you have open, you have to press Tab O(n) times.
Exposé, on the other hand, depends on pointing – so because of Fitts’s Law, the cost is more
like O(log n). (Of course, this analysis only considers motor movement, not visual search
time; it assumes you already know where the window you want is in each interface. But
Exposé probably wins on visual search, too, since the visual representation shows the
window itself, rather than a frequently-ambiguous icon.)

4

Fall 2005 6.831 UI Design and Implementation 4

�������������

� Topics
� L1: usability
� L2: user-centered design, user & task analysis
� L3: MVC, observer, view hierarchy
� L4: component, stroke & pixel models, redraw, double-

buffering
� L5: perception, cognition, motor, memory, vision
� L6: events, dispatch & propagation, finite state controllers, interactors
� L7: interface styles, direct manipulation, affordances,

mapping, visibility, feedback
� L8: Nielsen�s heuristics
� L9: paper prototyping, fidelity, look/feel, depth/breadth,

computer prototyping, Wizard of Oz
� L10: automatic layout, layout propagation, constraints,

model-based user interfaces
� Everything is fair game

� Class discussion, lecture notes, readings, assignments
� Closed book exam, 80 minutes

5

Fall 2005 6.831 UI Design and Implementation 5

 ���!"� �#��"

� Automatic layout
� Constraints
� Model-based UI

6

Fall 2005 6.831 UI Design and Implementation 6

�����������"$�%��������

� Declarative programming
�Saying what you want

� Procedural programming
�Saying how to achieve it

Declarative
A tower of 3 blocks.

Procedural
1. Put down block A.
2. Put block B on block A.
3. Put block C on block B.

Today we’ll be talking about ways to implement user interfaces using higher-level, more
abstract specifications – particularly, declarative specifications. The key advantage of
declarative programming is that you just say what you want, and leave it to an automatic
tool to figure out how to produce it. That contrasts with conventional procedural
programming, where the programmer has to say, step-by-step, how to reach the desired
state.

7

Fall 2005 6.831 UI Design and Implementation 7

&'� #��
�(���� ���������

� Layout = component positions & sizes
�Sometimes called geometry

� Declarative layout
�Declare the components
� Java: component hierarchy

�Declare their layout relationships
� Java: layout managers

� Procedural layout
�Write code to compute positions and sizes

Our first example of declarative user interface should already be somewhat familiar to you:
automatic layout. In Java, automatic layout is a declarative process. First you specify the
graphical objects that should appear in the window, which you do by creating instances of
various objects and assembling them into a component hierarchy. Then you specify how
they should be related to each other, by attaching a layout manager to each container.

You can contrast this to a procedural approach to layout, in which you actually write Java
code that computes positions and sizes of graphical objects. You wrote a lot of this code in
the checkerboard assignment, for example.

8

Fall 2005 6.831 UI Design and Implementation 8

)�"��"�������(���� ���������

� Higher level programming
�Shorter, simpler code

� Adapts to change
�Window size
�Font size
�Widget set (or theme or skin)
� Labels (internationalization)
�Adding or removing components

Here are the two key reasons why we like automatic layout – and these two reasons
generalize to other forms of declarative UI as well.

First, it makes programming easier. The code that sets up layout managers is usually much
simpler than procedural code that does the same thing.

Second, the resulting layout can respond to change more readily. Because it is generated
automatically, it can be regenerated any time changes occur that might affect it. One
obvious example of this kind of change is resizing the window, which increases or
decreases the space available to the layout You could handle window resizing with
procedural code as well, of course, but the difficulty of writing this code means that
programmers generally don’t. (That’s why many Windows dialog boxes, which are
generally laid out using absolute coordinates in a GUI builder, refuse to be resized!)

Automatic layout can also automatically adapt to font size changes, different widget sets
(e.g., buttons of different size, shape, or decoration), and different labels (which often occur
when you translate an interface to another language, e.g. English to German). These kinds
of changes tend to happen as the application is moved from one platform to another, rather
than dynamically while the program is running; but it’s helpful if the programmer doesn’t
have to worry about them.

Another dynamic change that automatic layout can deal with is the appearance or
disappearance of components -- if the user is allowed to add or remove buttons from a
toolbar, for example, or if new textboxes can be added or removed from a search query.

9

Fall 2005 6.831 UI Design and Implementation 9

������� �*��"

� Layout manager performs automatic layout of
a container�s children
� 1D (BoxLayout, FlowLayout, BorderLayout)
� 2D (GridLayout, GridBagLayout, TableLayout)

� Advantages
� Captures most common kinds of layout

relationships in reusable form

� Disadvantages
� Can only relate siblings in component hierarchy

Let’s talk specifically about the layout-manager approach used in Java, which evolved from
earlier UI toolkits like Motif and Tcl/Tk. A layout manager is attached to a container, and
it computes the positions and sizes of that container’s children. There are two basic kinds of
layout managers: one-dimensional and two-dimensional.

One-dimensional layouts enforce only one direction of alignment between the components;
for example, BoxLayout aligns components along a line either horizontally or vertically.
BorderLayout is also one-dimensional: it can align components along any edge of the
container, but the components on different edges aren’t aligned with each other at all.

Two-dimensional layouts can enforce alignment in two directions, so that components are
lined up in rows and columns. 2D layouts are generally more complicated to specify
(totally GridBag!), but we’ll see in the Graphic Design lecture that they’re really essential
for many dialog box layouts, in which you want to align captions and fields both
horizontally and vertically at the same time.

Layout managers are a great tool because they capture the most common kinds of layout
relationships as reusable objects. But a single layout manager can make only local
decisions: that is, it computes the layout of only one container’s children, based on the
space available to the container. So they can only enforce relationships between siblings in
the component hierarchy. For example, if you want all the buttons in your layout to be the
same size, a layout manager can only enforce that if the buttons all belong to the same
parent. That’s a difference from the more general constraint system approach to layout that
we’ll see later in this lecture. Constraints can be global, cutting across the component
hierarchy to relate different components at different levels.

10

Fall 2005 6.831 UI Design and Implementation 10

������%��#*����

computePreferredSize(Container parent)
for each child in parent,

computePreferredSize(child)
compute parent�s preferred size from children

e.g., horizontal layout,
(prefwidth,prefheight) = (sum(children prefwidth),

max(children prefheight)

layout(Container parent) requires: parent�s size already set
apply layout constraints to allocate space for each child

child.(width,height) = (parent.width / #children, parent.height)
set positions of children

child[i].(x,y) = (child[i-1].x+child[i-1].width, 0)
for each child in parent,

layout(child)

Since the component hierarchy usually has multiple layout managers in it (one for each
container), these managers interact by a layout propagation algorithm to determine the
overall layout of the hierarchy.

Layout propagation has two parts.

First, the size requirements (preferred sizes) of each container are calculated by a bottom-
up pass over the component hierarchy. The leaves of the hierarchy – like labels, buttons,
and textboxes – determine their preferred sizes first, by calculating how large a rectangle
they need to display to display their text label and surrounding whitespace or decorations.
Then each container’s layout manager computes its size requirement by combining the
desired sizes of its children. The preferred sizes of components are used for two things: (1)
to determine an initial size for the entire window, which is what Java’s pack() method does;
and (2) to allow some components to be fixed to their natural size, rather than trying to
expand them or shrink them, and adjust other parts of the layout accordingly.

Once the size of the entire window has been established (either by computing its preferred
size, or when the user manually sets it by resizing), the actual layout process occurs top-
down. For each container in the hierarchy, the layout manager takes the container’s
assigned size (as dictated by its own parent’s layout manager), applies the layout rules to
allocate space for each child, and sets the positions and sizes of the children appropriately.
Then it recursively tells each child to compute its layout.

11

Fall 2005 6.831 UI Design and Implementation 11

��+ �,���������"���"�(���������#��

OK

space allocated to child

child’s actual size & position

Anchoring

OK
OK

northwest centered

Expanding

OK

Padding

OK

Let’s talk about a few key concepts in layout managers. First, depending on the layout
manager, the space allocated to a child by its container’s layout manager is not always the
same as the size of the child. For example, in GridBagLayout, you have to explicitly say
that a component should fill its space allocation, in either the x or y direction or both (also
called expanding in other layout managers).

Some layout managers allow some of the space allocation to be used for a margin around
the component, which is usually called padding. The margin is added to the child’s
preferred size during the bottom-up size requirements pass, but then subtracted from the
available space allocation during the top-down layout pass.

When a child doesn’t fill its allocated space, most layout managers let you decide how you
want the component to be anchored (or aligned) in the space – along a boundary, in a
corner, or centering in one or both directions. In a sense, expanding is just anchoring to all
four corners of the available space.

Since the boundaries aren’t always visible – the button shown here has a clear border
around it, but text labels usually don’t – you might find this distinction between the space
allocation and the component confusing. For example, suppose you want to left-justify a
text label within the allocated space. You can do it two ways: (1) by telling the label itself
to display left-justified with respect to its own rectangle, or (2) by telling the layout
manager to anchor the label to the left side of its space allocation. But method #1 works
only if the label is expanded to fill its space allocation, and method #2 works only if the
label is not expanded. So subtle bugs can result.

12

Fall 2005 6.831 UI Design and Implementation 12

��+ �,�����(��������"�-��+ ���������.

Label Text box Label

strut: invisible, fixed-size
component used for adding
whitespace between child
allocations

some children
are fixed-size

glue: invisible, growable
component used for
right-justification

other children grow & shrink
with available space in parent

Now let’s look at how space allocations typically interact. During the top-down phase of
the layout process, the container’s size is passed down from above, so the layout manager
has to do the best it can with the space provided to it. This space may be larger or smaller
than the layout’s preferred size. So layout managers usually let you specify which of the
children are allowed to grow or shrink in response, and which should be fixed at their
preferred size. If more than one child is allowed to take up the slack, the layout manager
has rules (either built in or user-specified) for what fraction of the excess space should be
given to each resizable child.

In Java, growing and shrinking is constrained by two other properties of components:
minimum size and maximum size. So one way to keep a component from growing or
shrinking is to ensure that its minimum size and maximum size are always identical to its
preferred size. But layout managers often have a way to specify it explicitly, as well.

Struts and glue are two handy idioms for inserting whitespace (empty space) into an
automatic layout. A strut is a fixed-size invisible component; it’s used for margins and
gaps between components. Glue is an invisible component that can grow and shrink with
available space. It’s often used to push components over to the right (or bottom) of a
layout.

Sometimes the layout manager itself allows you to specify the whitespace directly in its
rules, making struts and glue unnecessary. For example, TableLayout lets you have empty
rows or columns of fixed or varying size. But BoxLayout doesn’t, so you have to use struts
and glue.

Java has factory methods for struts and glue in the Box class, but even if struts or glue
weren’t available in the toolkit, you could create them easily. Just make a component that
draws nothing and set its sizes (minimum, preferred, maximum) appropriately.

13

Fall 2005 6.831 UI Design and Implementation 13

�"��*�/�"����%���"����������

Another common trick in layout managers is to introduce new containers (JPanels in Java)
in the component hierarchy, just for the sake of layout. This makes it possible to use one-
dimensional layout managers more heavily in your layout. In this example, a BorderLayout
might be used at the top level to arrange the three topmost panels (toolbar at top, palette
along the left side, and main panel in the center), with BoxLayouts to layout each of those
panels in the appropriate direction.

This doesn’t eliminate the need for two-dimensional layout managers, of course. Because a
layout manager can only relate one container’s children, you wouldn’t be able enforce
simultaneous alignments between captions and fields, for example, because using nested
panels with one-dimensional layouts would force you to put them into separate containers.

14

Fall 2005 6.831 UI Design and Implementation 14

,��"�����"

� Constraint = relationship among
variables
�Automatically maintained by system
�Constraint propagation: When a variable

changes, other variables are automatically
changed to satisfy constraint

Since layout managers have limitations, let’s look at a more general form of declarative UI,
that can be used not only for layout but for other purposes as well: constraints.

A constraint is a relationship among variables. The programmer specifies the relationship,
and then the system tries to automatically satisfy it. Whenever one variable in the
constraint changes, the system tries to adjust variables so that the constraint continues to be
true. Constraints are rarely used in isolation; instead, the system has a collection of
constraints that it’s trying to satisfy, and a constraint propagation algorithm satisfies the
constraints when a variable changes.

In a sense, layout managers are a limited form of constraint system. Each layout manager
represents a set of relationships among the positions and sizes of the children of a single
container; and layout propagation finds a solution that satisfies these relationships.

15

Fall 2005 6.831 UI Design and Implementation 15

�"��*�,��"�����"����������

Label1 Textbox Label2

label1.left = 5
label1.width = textwidth(label1.text, label1.font)
label1.right = textbox.left
label1.left + label1.width = label1.right

textbox.width >= parent.width / 2
textbox.right <= label2.left

label2.right = parent.width

Here’s an example of some constraint equations for layout. This is same layout we showed
a couple of slides ago, but notice that we didn’t need struts or glue here; constraint
equations can do the job instead.

This simple example reveals some of the important issues about constraint systems. One
issue is whether the constraint system is one-way or multiway. One-way constraint
systems are like spreadsheets – you can think of every variable like a spreadsheet cell with a
formula in it calculating its value in terms of other variables. One-way constraints must be
written in the form X=f(X1,X2,X3,…). Whenever one of the Xi’s changes, the value of X
is recalculated. (In practice, this is often done lazily – i.e., the value of X isn’t recalculated
until it’s actually needed.)

Multiway constraints are more like systems of equations -- you could write each one as
f(X1,X2,X3,…) = 0. The programmer doesn’t identify one variable as the output of the
constraint – instead, the system can adjust any variable (or more than one variable) in the
equation to make the constraint become true. Multiway constraint systems offer more
declarative power than one-way systems, but the constraint propagation algorithms are far
more complex to implement.

One-way constraint systems must worry about cycles: if variable X is computed from
variable Y, but variable Y must be computed from variable X, how do you compute it?
Some systems simply disallow cycles (spreadsheets consider them errors, for example).
Others break the cycle by reusing the old (or default) value for one of the variables; so
you’ll compute variable Y using X’s old value, then compute a new value for X using Y.

Conflicting constraints are another problem – causing the constraint system to have no
solution. Conflicts can be resolved by constraint hierarchies, in which each constraint
equation belongs to a certain priority level. Constraints on higher priority levels take
precedence over lower ones.

Inequalities (such as textbox.right <= label2.left) are often useful in specifying layout

16

Fall 2005 6.831 UI Design and Implementation 16

�"��*�,��"�����"�����0������

� Input
� checker.(x,y) = mouse.(x,y)

if mouse.button1 && mouse.(x,y) in checker

� Output
� checker.dropShadow.visible = mouse.button1 &&

mouse.(x,y) in checker

� Interactions between components
� deleteButton.enabled = (textbox.selection != null)

� Connecting view to model
� checker.x = board.find(checker).column * 50

Constraints can be used for more general purposes than just layout. Here are a few.

Some forms of input can be handled by constraints, if you represent the state of the input
device as variables in constraint equations. For example, to drag a checker around on a
checkerboard, you constrain its position to the position of the mouse pointer.

Constraints can be very useful for keeping user interface components consistent with each
other. For example, a Delete toolbar button and a Delete command on the Edit menu should
only be enabled if something is actually selected. Constraints can make this easy to state.

The connection between a view and a model is often easy to describe with constraints, too.
(But notice the conflicting constraints in this example! checker.x is defined both by the
dragging constraint and by the model constraint. Either you have to mix both constraints in
the same expression – e.g., if dragging then use the dragging constraint, else use the model
constraint – or you have to specify priorities to tell the system which constraint should win.)

The alternative to using constraints in all these cases is writing procedural code – typically
an event handler that fires when one of the dependent variables changes (like mouseMoved
for the mouse position, or selectionChanged for the textbox selection, or pieceMoved for the
checker position), and then computes the output variable correctly in response. The idea of
constraints is to make this code declarative instead, so that the system takes care of
listening for changes and computing the response.

17

Fall 2005 6.831 UI Design and Implementation 17

,��"�����"�(���������������

-scrollpane.child.y

scrollpane.child.height – scrollpane.height

scrollbar.thumb.y

scrollbar.track.height – scrollbar.thumb.height

=

This example shows how powerful constraint specification can be. It shows how a
scrollbar’s thumb position is related to the position of the pane that it’s scrolling. (The
pane’s position is relative to the coordinate system of the scroll window, which is why it’s
negative.) Not only is it far more compact than procedural code would be, but it’s
multiway: you can see how moving the thumb should affect the pane, and how moving the
pane (e.g. by scrolling with arrow keys or jumping to a bookmark) should affect the thumb,
so that both remain consistent.

Alas, constraint-based user interfaces are still an area of research, not much practice. Some
research UI toolkits have incorporated constraints (Amulet, Artkit, Subarctic, among
others), and a few research constraint solvers exist that you can plug in to existing toolkits
(e.g., Cassowary). But you won’t find constraint systems in most commercial user interface
toolkits, except in limited ways. The SpringLayout layout manager is the closest thing to a
constraint system you can find in standard Java (it suffers from the limitations of all layout
managers).

But you can still think about your user interface in terms of constraints, and document your
code that way. You’ll find it’s easier to generate procedural code once you’ve clearly stated
what you want (declaratively). If you state a constraint equation, then you know which
events you have to listen for (any changes to the variables in your equation), and you know
what those event handlers should do (solve for the other variables in the equation). Writing
procedural code for the scrollpane is much easier if you’ve already written the constraint
relationship.

18

Fall 2005 6.831 UI Design and Implementation 18

�����10"����"�����������"

� Programmer writes logical model of UI
� State variables (bool, int, string, list)
� Commands

� System generates actual presentation
� Grouping into windows, tabs, panels
� Widget selection
� Layout

� Same motivation as other declarative UI
� Higher-level programming
� Adapting to change: particularly for devices and users
� Screen size (watch, phone, PDA, laptop, desktop, wall)
� Widgets available (phone vs. desktop)
� Input style (mouse vs. arrow buttons; speech, finger, pen)
� Output style (speech vs. display)
� User behavior (uses some components more)

Let’s discuss one more example of declarative UI, which is even farther-out than constraint
systems. In model-based user interface, the goal is to describe the entire user interface
declaratively, not just one aspect of it like layout or input handling.

The programmer provides a high-level description of the user interface, often called a
model, which consists of a set of data variables and commands. A model for a login dialog
box, for example, might state that are two string variables (a username and password) and
one command (login).

This description is then used to generate a presentation. Aspects of the presentation that
must be generated include its grouping (how variables and commands are organized); the
particular widgets selected for each model element (e.g., a string variable might be
represented by a textfield, a text area, or a combobox; a command might be a button, menu
item, keyboard shortcut, or all three). Layout is part of presentation, of course; so are
labels for the widgets, font and color choices.

The presentation can’t be generated completely automatically, of course – UI design isn’t
that easy to automate (yet). Generally, the programmer has to provide some presentation
specification as well – perhaps completely specified (as in the UIML system we read about)
or merely as hints or constraints on legal or desirable presentations (as in the SUPPLE
system we read about).

Model-based user interface is driven by the same motivations as other declarative UI:
simpler programming, and adapting to change. But the kinds of change that model-based
UI can adapt to is broader. Ideally, a model-based UI should be able to generate
presentations for a broad variety of devices and I/O styles: not just a desktop with mouse
and keyboard, but a cellphone with a tiny screen, buttons, and voice I/O; or a large wall
screen with touch-sensitive finger input. Another kind of adaptation envisioned by model-
based UI is user adaptation; an interface might change depending on how the user interacts
with it.

19

Fall 2005 6.831 UI Design and Implementation 19

�����(##����

� Programmer writes XML spec for both model
and view
� Model: <description>
� Grouping: <structure>
� Labels: <data>
� Widget selection & layout: <style>
� Behavior: <events>

� Separation of concerns allows managing
families of interfaces
� Reuse application parts for multiple devices
� Reuse device parts for multiple applications

The readings for today’s lecture covered two approaches to model-based UI. With UIML,
the programmer writes an XML specification that includes not only the model but also
explicit rules for transforming the model into a presentation. This puts the programmer in
control, but still enables the same UI model to be retargeted to different devices or
platforms.

20

Fall 2005 6.831 UI Design and Implementation 20

��%%�&�(##����

� Application model
� Elements: state variables and commands
� Tree structure: grouping
� Labels for each element

� Device description
� Widget set
� Navigation costs (switch, enter, leave)
� Manipulation costs (changing value)

� User data
� Trace of actions by a user

� System automatically searches for a presentation
� Assignment of widgets to model elements that minimizes

cost of user trace

SUPPLE is interesting because it’s much more automatic. Given a model and an
underspecified presentation, SUPPLE can search for a presentation that optimizes a certain
cost function. As described in the paper, SUPPLE optimizes for efficiency, given some
information about the kinds of actions that a particular user does. The cost of actions
includes both navigation – moving from one widget to another – and manipulation –
changing the value of a control. If two widgets are on different tab panes, for example, the
cost of navigating between them is higher than if they were colocated. The cost of
manipulating a spinner widget (with only up/down arrows, hence O(n) time to change a
distance of n) is higher than that of a slider widget (which uses Fitts’s Law, hence O(log n)
time to change).

The natural question to ask about model-based user interfaces is, how much control do you
really have over the usability of the final presentation? For example, SUPPLE optimizes
for efficiency – what if other dimensions of usability are more important, like learnability or
minimizing errors? Also, what about internal consistency – if an interface appears different
on different devices, or if it changes over time to optimize your actions, then the user may
have to relearn the interface as it changes. Model-based user interfaces are still an active
area of research.

