Lecture 10: Declarative Ul

Fall 2005 6.831 Ul Design and Implementation

Quiz on Monday

e Topics
— L1: usability
- L2: user-centered design, user & task analysis
- L3: MVC, observer, view hierarchy

— L4: component, stroke & pixel models, redraw, double-
buffering

- L5: perception, cognition, motor, memory, vision
- L6: events, dispatch & propagation, finite state controllers, interactors
- L7 int_erfac_e_st_rles, direct manipulation, affordances,
mapping, visibility, feedback
- L8: Nielsen’s heuristics
- L9: paper prototyping, fidel\i{v, look/feel, depth/breadth,
computer prototyping, Wizard of Oz
- L10: automatic layout, layout propagation, constraints,
model-based user interfaces
e Everything is fair game
- Class discussion, lecture notes, readings, assignments
¢ Closed book exam, 80 minutes

Fall 2005 6.831 Ul Design and Implementation

Today’s Topics

¢ Automatic layout
¢ Constraints
e Model-based Ul

Fall 2005 6.831 Ul Design and Implementation

Declarative vs. Procedural

¢ Declarative programming
- Saying what you want

¢ Procedural programming
- Saying how to achieve it

Declarative Procedural

A tower of 3 blocks. 1. Put down block A.
2. Put block B on block A.
3. Put block C on block B.

Fall 2005 6.831 Ul Design and Implementation

Example: Automatic Layout

e Layout = component positions & sizes
- Sometimes called geometry
¢ Declarative layout
- Declare the components
e Java: component hierarchy
- Declare their layout relationships
e Java: layout managers
¢ Procedural layout
- Write code to compute positions and sizes

Fall 2005 6.831 Ul Design and Implementation

Reasons to Do Automatic Layout

¢ Higher level programming
- Shorter, simpler code
e Adapts to change
- Window size
- Font size
—Widget set (or theme or skin)
- Labels (internationalization)
— Adding or removing components

Fall 2005 6.831 Ul Design and Implementation

Layout Managers

¢ Layout manager performs automatic layout of
a container’s children
- 1D (BoxLayout, FlowLayout, BorderLayout)
- 2D (GridLayout, GridBagLayout, TableLayout)

e Advantages

— Captures most common kinds of layout
relationships in reusable form

¢ Disadvantages
- Can only relate siblings in component hierarchy

Fall 2005 6.831 Ul Design and Implementation

Layout Propagation

computePreferredSize(Container parent)
for each child in parent,
computePreferredSize(child)
compute parent’s preferred size from children
e.g., horizontal layout,
(prefwidth,prefheight) = (sum(children prefwidth),
max(children prefheight)

layout(Container parent) requires: parent’s size already set
apply layout constraints to allocate space for each child
child.(width,height) = (parent.width / #children, parent.height)
set positions of children
child[i].(x,y) = (child[i-1].x+child[i-1].width, 0)
for each child in parent,
layout(child)

Fall 2005 6.831 Ul Design and Implementation

How Child Fills Its Allocated Space

/ space allocated to child

OK
1

child’s actual size & position

How Child Allocations Grow and Shrink

some children other children grow & shrink
are fixed-size with available space in parent
| /
Voo ¢

abel | Text box g D)

Expanding Padding Anchoring
e)) glue: invisible, growable
OK strut: invisible, fixed-size
OK OK J component used for adding ﬁomeﬁzﬁﬁé:t?:: for
whitespace between child Nt
northwest centered allocations
Fall 2005 6.831 Ul Design and Implementation 9 Fall 2005 6.831 Ul Design and Implementation 10
Using Nested Panels for Layout Constraints

Fall 2005 6.831 Ul Design and Implementation

¢ Constraint = relationship among
variables

- Automatically maintained by system

» Constraint propagation: When a variable
changes, other variables are automatically
changed to satisfy constraint

Fall 2005 6.831 Ul Design and Implementation 12

Using Constraints for Layout

Label1 | Textbox |

labell.left =5

label1.width = textwidth(label1.text, labell.font)
label1.right = textbox.left

labell.left + label1.width = label1.right

textbox.width >= parent.width / 2
textbox.right <= label2.left

label2.right = parent.width

Fall 2005 6.831 Ul Design and Implementation

Using Constraints for Behavior

e Input
- checker.(x,y) = mouse.(x,y)
if mouse.button1 && mouse.(x,y) in checker
e Output

- checker.dropShadow.visible = mouse.button1 &&
mouse.(x,y) in checker

¢ Interactions between components

- deleteButton.enabled = (textbox.selection != null)
Connecting view to model

- checker.x = board.find(checker).column * 50

L[]

Fall 2005 6.831 Ul Design and Implementation 14

Constraints Are Declarative Ul

scrollbar.thumb.y

scrollbar.track.height — scrollbar.thumb.height

-scrollpane.child.y

scrollpane.child.height — scrollpane.height

Fall 2005 6.831 Ul Design and Implementation

Model-Based User Interfaces

e Programmer writes logical model of Ul
- State variables (bool, int, string, list)
- Commands
e System generates actual presentation
— Grouping into windows, tabs, panels
- Widget selection
- Layout
¢ Same motivation as other declarative Ul
- Higher-level programming
- Adapting to change: particularly for devices and users
e Screen size (watch, phone, PDA, laptop, desktop, wall)
¢ Widgets available (phone vs. desktop)
e Input style (mouse vs. arrow buttons; speech, finger, pen)
¢ Output style (speech vs. display)
o User behavior (uses some components more)

Fall 2005 6.831 Ul Design and Implementation 16

UIML Approach SUPPLE Approach

¢ Programmer writes XML spec for both model ¢ Application model
and view — Elements: state variables and commands
- Model: <description> - Tree structure: grouping

Grouping: <structure - Labels for each element
uping: <structure> e Device description
- Labels: <data>

. ’ - Widget set
- Widget selection & layout: <style> - Navigation costs (switch, enter, leave)
- Behavior: <events> - Manipulation costs (changing value)
¢ Separation of concerns allows managing * Userdata
families of interfaces S‘ Trace of actions by IT user hos | ,

- Reuse application parts for multiple devices * System automatically searches for a presentation
. . — - Assignment of widgets to model elements that minimizes

- Reuse device parts for multiple applications cost of user trace

Fall 2005 6.831 Ul Design and Implementation 17 Fall 2005 6.831 Ul Design and Implementation 18

