Lecture 10: Declarative Ul

Fall 2005 6.831 Ul Design and Implementation

Quiz on Monday

e Topics
— L1: usability
- L2: user-centered design, user & task analysis
- L3: MVC, observer, view hierarchy

— L4: component, stroke & pixel models, redraw, double-
buffering

- L5: perception, cognition, motor, memory, vision
- L6: events, dispatch & propagation, finite state controllers, interactors
- L7 int_erfac_e_st_rles, direct manipulation, affordances,
mapping, visibility, feedback
- L8: Nielsen’s heuristics
- L9: paper prototyping, fidel\i{v, look/feel, depth/breadth,
computer prototyping, Wizard of Oz
- L10: automatic layout, layout propagation, constraints,
model-based user interfaces
e Everything is fair game
- Class discussion, lecture notes, readings, assignments
¢ Closed book exam, 80 minutes
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Today’s Topics

¢ Automatic layout
¢ Constraints
e Model-based Ul
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Declarative vs. Procedural

¢ Declarative programming
- Saying what you want

¢ Procedural programming
- Saying how to achieve it

Declarative Procedural

A tower of 3 blocks. 1. Put down block A.
2. Put block B on block A.
3. Put block C on block B.
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Example: Automatic Layout

e Layout = component positions & sizes
- Sometimes called geometry
¢ Declarative layout
- Declare the components
e Java: component hierarchy
- Declare their layout relationships
e Java: layout managers
¢ Procedural layout
- Write code to compute positions and sizes
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Reasons to Do Automatic Layout

¢ Higher level programming
- Shorter, simpler code
e Adapts to change
- Window size
- Font size
—Widget set (or theme or skin)
- Labels (internationalization)
— Adding or removing components
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Layout Managers

¢ Layout manager performs automatic layout of
a container’s children
- 1D (BoxLayout, FlowLayout, BorderLayout)
- 2D (GridLayout, GridBagLayout, TableLayout)

e Advantages

— Captures most common kinds of layout
relationships in reusable form

¢ Disadvantages
- Can only relate siblings in component hierarchy
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Layout Propagation

computePreferredSize(Container parent)
for each child in parent,
computePreferredSize(child)
compute parent’s preferred size from children
e.g., horizontal layout,
(prefwidth,prefheight) = (sum(children prefwidth),
max(children prefheight)

layout(Container parent) requires: parent’s size already set
apply layout constraints to allocate space for each child
child.(width,height) = (parent.width / #children, parent.height)
set positions of children
child[i].(x,y) = (child[i-1].x+child[i-1].width, 0)
for each child in parent,
layout(child)
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How Child Fills Its Allocated Space

/ space allocated to child

OK
1

child’s actual size & position

How Child Allocations Grow and Shrink

some children other children grow & shrink
are fixed-size with available space in parent
| /
Voo ¢

abel | Text box g D)

Expanding Padding Anchoring
e ) ) glue: invisible, growable
OK strut: invisible, fixed-size
OK OK J component used for adding ﬁomeﬁzﬁﬁé:t?:: for
whitespace between child Nt
northwest centered allocations
Fall 2005 6.831 Ul Design and Implementation 9 Fall 2005 6.831 Ul Design and Implementation 10
Using Nested Panels for Layout Constraints

Fall 2005 6.831 Ul Design and Implementation

¢ Constraint = relationship among
variables

- Automatically maintained by system

» Constraint propagation: When a variable
changes, other variables are automatically
changed to satisfy constraint
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Using Constraints for Layout

Label1 | Textbox |

labell.left =5

label1.width = textwidth(label1.text, labell.font)
label1.right = textbox.left

labell.left + label1.width = label1.right

textbox.width >= parent.width / 2
textbox.right <= label2.left

label2.right = parent.width
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Using Constraints for Behavior

e Input
- checker.(x,y) = mouse.(x,y)
if mouse.button1 && mouse.(x,y) in checker
e Output

- checker.dropShadow.visible = mouse.button1 &&
mouse.(x,y) in checker

¢ Interactions between components

- deleteButton.enabled = (textbox.selection != null)
Connecting view to model

- checker.x = board.find(checker).column * 50

L[]
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Constraints Are Declarative Ul

scrollbar.thumb.y

scrollbar.track.height — scrollbar.thumb.height

-scrollpane.child.y

scrollpane.child.height — scrollpane.height
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Model-Based User Interfaces

e Programmer writes logical model of Ul
- State variables (bool, int, string, list)
- Commands
e System generates actual presentation
— Grouping into windows, tabs, panels
- Widget selection
- Layout
¢ Same motivation as other declarative Ul
- Higher-level programming
- Adapting to change: particularly for devices and users
e Screen size (watch, phone, PDA, laptop, desktop, wall)
¢ Widgets available (phone vs. desktop)
e Input style (mouse vs. arrow buttons; speech, finger, pen)
¢ Output style (speech vs. display)
o User behavior (uses some components more)
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UIML Approach SUPPLE Approach

¢ Programmer writes XML spec for both model ¢ Application model
and view — Elements: state variables and commands
- Model: <description> - Tree structure: grouping

Grouping: <structure - Labels for each element
uping: <structure> e Device description
- Labels: <data>

. ’ - Widget set
- Widget selection & layout: <style> - Navigation costs (switch, enter, leave)
- Behavior: <events> - Manipulation costs (changing value)
¢ Separation of concerns allows managing * Userdata
families of interfaces S‘ Trace of actions by IT user hos | ,

- Reuse application parts for multiple devices * System automatically searches for a presentation
. . — - Assignment of widgets to model elements that minimizes

- Reuse device parts for multiple applications cost of user trace

Fall 2005 6.831 Ul Design and Implementation 17 Fall 2005 6.831 Ul Design and Implementation 18




