
1

Fall 2004 6.831 UI Design and Implementation 1

���������	�
����
�������������������

Prof. Rob Miller
MIT EECS

2

Fall 2004 6.831 UI Design and Implementation 2

�����
��������������������� �

Source: Interface Hall of Shame

Usability is about creating effective user interfaces (UIs). Slapping a pretty window interface on a program
does not automatically confer usability on it. This example shows why. This dialog box, which appeared in a
program that prints custom award certificates, presents the task of selecting a template for the certificate.

This interface is clearly graphical. It’s mouse-driven – no memorizing or typing complicated commands. It’s
even what-you-see-is-what-you-get (WYSIWYG) – the user gets a preview of the award that will be created.
So why isn’t it usable?

The first clue that there might be a problem here is the long help message on the left side. Why so much help
for a simple selection task? Because the interface is bizarre! The scrollbar is used to select an award
template. Each position on the scrollbar represents a template, and moving the scrollbar back and forth
changes the template shown.

This is a cute but bad use of a scrollbar. Notice that the scrollbar doesn’t have any marks on it. How many
templates are there? How are they sorted? How far do you have to move the scrollbar to select the next one?
You can’t even guess from this interface.

3

Fall 2004 6.831 UI Design and Implementation 3

�����
��������������������� �

Source: Interface Hall of Shame

Normally, a horizontal scrollbar underneath an image (or document, or some other content) is designed for
scrolling the content horizontally. A new or infrequent user looking at the window sees the scrollbar, assumes
it serves that function, and ignores it. Inconsistency with prior experience and other applications tends to trip
up new or infrequent users.

Another way to put it is that the horizontal scrollbar is an affordance for continuous scrolling, not for discrete
selection. We see affordances out in the real world, too; a door knob says “turn me”, a handle says “pull me”.
We’ve all seen those apparently-pullable door handles with a little sign that says “Push”; and many of us have
had the embarrassing experience of trying to pull on the door before we notice the sign. The help text on this
dialog box is filling the same role here.

But the dialog doesn’t get any better for frequent users, either. If a frequent user wants a template they’ve
used before, how can they find it? Surely they’ll remember that it’s 56% of the way along the scrollbar? This
interface provides no shortcuts for frequent users. In fact, this interface takes what should be a random access
process and transforms it into a linear process. Every user has to look through all the choices, even if they
already know which one they want. The computer scientist in you should cringe at that algorithm.

Even the help text has usability problems. “Press OKAY”? Where is that? And why does the message have a
ragged left margin? You don’t see ragged left too often in newspapers and magazine layout, and there’s a
good reason.

On the plus side, the designer of this dialog box at least recognized that there was a problem – hence the help
message. But the help message is indicative of a flawed approach to usability. Usability can’t be left until the
end of software development, like package artwork or an installer. It can’t be patched here and there with
extra messages or more documentation. It must be part of the process, so that usability bugs can be fixed,
instead of merely patched.

How could this dialog box be redesigned to solve some of these problems?

4

Fall 2004 6.831 UI Design and Implementation 4

�������� �������
��� ��

Source: Interface Hall of Shame

Here’s one way it might be redesigned. The templates now fill a list box on the left;
selecting a template shows its preview on the right. This interface suffers from none of the
problems of its predecessor: list boxes clearly afford selection to new or infrequent users;
random access is trivial for frequent users. And no help message is needed.

5

Fall 2004 6.831 UI Design and Implementation 5

!�����
������������� �

Source: Interface Hall of Shame

Here’s another bizarre interface, taken from a program that launches housekeeping tasks at
scheduled intervals. The date and time look like editable fields (affordance!), but you can’t
edit them with the keyboard. Instead, if you want to change the time, you have to click on
the Set Time button to bring up a dialog box.

This dialog box displays time differently, using 12-hour time (7:17 pm) where the original
dialog used 24-hour time (consistency!). Just to increase the confusion, it also adds a third
representation, an analog clock face.

So how is the time actually changed? By clicking mouse buttons: clicking the left mouse
button increases the minute by 1 (wrapping around from 59 to 0), and clicking the right
mouse button increases the hour. Sound familiar? This designer has managed to turn a
sophisticated graphical user interface, full of windows, buttons, and widgets, and controlled
by a hundred-key keyboard and two-button mouse, into a clock radio!
Perhaps the worst part of this example is that it’s not a result of laziness. Somebody went to
a lot of effort to draw that clock face with hands. If only they’d spent some of that time
thinking about usability instead.

6

Fall 2004 6.831 UI Design and Implementation 6

������������ �������������"�� �#

Gimp is an open-source image editing program, comparable to Adobe Photoshop. Gimp’s designers made a
strange choice for its menus. Gimp windows have no menu bar. Instead, all Gimp menus are accessed from a
context menu, which pops up on right-click.

This is certainly inconsistent with other applications, and new users are likely to stumble trying to find, for
example, the File menu, which never appears on a context menu in other applications. (I certainly stumbled as
a new user of Gimp.) But Gimp’s designers were probably thinking about expert users when they made this
decision. A context menu should be faster to invoke, since you don’t have to move the mouse up to the menu
bar. A context menu can be popped up anywhere. So it should be faster. Right?

Wrong. With Gimp’s design, as soon as the mouse hovers over a choice on the context menu (like File or
Edit), the submenu immediately pops up to the right. That means, if I want to reach an option on the File
menu, I have to move my mouse carefully to the right, staying within the File choice, until it reaches the File
submenu. If my mouse ever strays into the Edit item, the File menu I’m aiming for vanishes, replaced by the
Edit menu. So if I want to select File/Quit, I can’t just drag my mouse in a straight line from File to Quit – I
have to drive into the File menu, turn 90 degrees and then drive down to Quit! Hierarchical submenus are
actually slower to use than a menu bar.

Part of the problem here is the way GTK (the UI toolkit used by Gimp) implements submenus. Changing the
submenu immediately is probably a bad idea. Microsoft Windows does it a little better – you have to hover
over a choice for about half a second before the submenu appears, so if you veer off course briefly, you won’t
lose your target. But you still have to make that right-angle turn. Apple Macintosh does even better: when a
submenu opens, there’s a triangular zone, spreading from the mouse to the submenu, in which the mouse
pointer can move without losing the submenu. So you can drive diagonally toward Quit without losing the File
menu, or you can drive straight down to get to the Edit menu instead.

Gimp’s designers made a choice without fully considering how it interacted with human capabilities. We’ll
see that there are some techniques and principles that we can use to predict how decisions like this will affect a
user interface – and we’ll also see how we can measure and evaluate the actual effects.

7

Fall 2004 6.831 UI Design and Implementation 7

�
���������"�� ��������� �#

There’s another interesting design feature in Gimp’s menus --- well-intentioned and clever,
but problematic in practice. Suppose my mouse is halfway down the File menu when I
notice that the Quit command actually has a keyboard shortcut: Ctrl-Q. Great! So I press it.

But it doesn’t invoke the Quit command. Instead, it changes the shortcut of whatever
command my mouse is hovering over --- in this case, Save --- to Ctrl-Q. This is a mode: a
user action that has a different meaning in one state of the program than in another. Modes
are inevitable in user interfaces, but mode errors --- using the action in the wrong mode, so
it does something you don’t intend --- do not have to be inevitable.

Worse, it’s not an easy error to undo. (Pressing Ctrl-Z, the conventional undo shortcut, only
makes it worse!) I have to reassign the old shortcut to the Save command --- if I can
remember the original shortcut. Then I have find the command whose original shortcut was
Ctrl-Q, and restore that one as well. This error wasn’t easily recoverable.
Gimp’s designers had a terrific idea here – making it easy to assign keyboard shortcuts by
just pointing at the menu item you want to change and pressing the shortcut. That’s simple
and elegant, in fact far simpler than most customization interfaces. But they’ve given us too
much rope, and it’s too easy to hang ourselves.

8

Fall 2004 6.831 UI Design and Implementation 8

�
���������"�� ��������� �#

In Emacs, Ctrl-S starts an incremental search. This is a well-designed feature.

- it’s highly responsive: updates as fast as the user can type

- it’s easily and obviously reversible: press Backspace if you made a mistake

- it provides immediate feedback about what it’s doing

- successful searches may even achieve early success: only 3 letters was enough to find
BasicProgressGenerator, and I could instantly tell that it was enough

- user gets early feedback about typos and failed searches

What’s the downside? All its controls are invisible. How do you start the incremental
search? How do you search again? How do you go backwards? How do you do a case-
sensitive search?

Once learned, however, these commands are simple. Ctrl-S starts the search. Pressing Ctrl-
S again looks for a later match. (But now there is the possibility of mode error!) Pressing
Ctrl-R looks backwards for a previous match. (What does Backspace do?) Using any
capitalized letters in your query forces a case-sensitive search. (But how do I search for an
all-lowercase string case-sensitively?)

9

Fall 2004 6.831 UI Design and Implementation 9

�
������������� �

XEmacs has menus now (the original Emacs didn’t). Alas, XEmacs isn’t interested in
helping users learn incremental search. Instead, it pops up this conventional Find dialog,
which scores great on visibility, but lacks the responsiveness, easy reversibility, and fast
performance of incremental search. Even worse, it covers up the matches you’re trying to
find unless you manhandle it out of the way!

10

Fall 2004 6.831 UI Design and Implementation 10

���������
���������
��
� �������

� User interface strongly affects
perception of software
�Usable software sells better
�Unusable web sites are abandoned

� Perception is sometimes superficial
�Users blame themselves for UI failings
�People who make buying decisions are not

always end-users

So what? Why should we care about usability? After all, human beings are capable of
extraordinary learning and adaptation. Even the worst interface can be fixed by a man page,
right?

Putting aside the essential inhumanity of this position, there are some practical reasons why
we should care about the user interfaces of our software. Usability strongly affects how
software is perceived, because the user interface is the means by which the software
presents itself to the world. “Ease of use” ratings appear in magazine reviews, affect word-
of-mouth recommendations, and influence buying decisions. Usable software sells.
Conversely, unusable software doesn’t sell. If a web site is so unusable that shoppers can’t
find what they want, or can’t make it through the checkout process, then they will go
somewhere else.

Unfortunately, a user’s perception of software usability is often superficial. An attractive
user interface may seem “user friendly” even if it’s not really usable. Part of that is because
users often blame themselves for errors they make, even if the errors could have been
prevented by better interface design. (“Oops, I missed the File menu again! How stupid of
me.”) So usability is a little different from other important attributes of software, like
reliability, performance, or security. If the program is slow, or crashes, or gets hacked, we
know who to blame. If it’s unusable, but not fatally so, the usability problems may go
unreported.

11

Fall 2004 6.831 UI Design and Implementation 11

����$�������%����� �
��& ���

� Users� time isn�t getting cheaper
� Design it correctly now, or pay for it later
� Disasters happen
�Therac-25 radiation therapy machine
�Aegis radar system in USS Vincennes
�Supertanker accident off England

Users don’t obey Moore’s Law. Their time doesn’t get cheaper with every new generation, like processors do. In fact,
user time is probably getting more expensive every year. Interfaces that waste user time repeatedly over a lifetime of use
impose a hidden cost that companies are less and less inclined to pay. For some applications, like customer call centers,
saving a few seconds per call may translate into millions of dollars saved per year.
Even for shrink-wrapped software, bad user interfaces can have costs after the sale. For many software companies, a single
customer support call can wipe out all the profit on that sale.
Bad user interface design can also cost lives. The Therac-25 was a radiation therapy machine for treating cancer patients.
It had an electron beam with two settings: a low-energy mode, beamed directly onto the patient, and a high-energy mode in
which the beam was blocked by an X-ray generating filter. Tragically, the system’s design had a race condition between
the user interface and the beam controller. If the operator chose a mode, and the machine started configuring itself, and
then the operator backed up and made a different choice within the 8-second interval it took for the machine to swing its
magnets into place, then part of the system wouldn’t receive the new setting. As a result, a fast, experienced operator could
inadvertently give severe overdoses, and several patients died. (Nancy Leveson, “Medical Devices: the Therac-25”, 1995,
http://sunnyday.mit.edu/therac-25.html)
In 1988, the USS Vincennes guided missile cruiser shot down an Iranian airliner over the Persian Gulf with almost 300
people aboard. There were two failures in this incident. The radar operator interpreted the airliner as an F-14, descending as
if to attack, rather than (in reality) a civilian plane that was climbing after takeoff. Both failures seemed to be caused by
user interface. The IFF system was reporting the signal from an F14 on the ground at an airport hundreds of miles away,
not the signal from the airliner; and the plane’s altitude readout showed only its current altitude, not the direction of change
in altitude, leaving to the operator the mental comparison and calculation to determine whether the altitude was going up or
down. (Peter Neumann, “Aegis, Vincennes, and the Iranian Airbus“, Risks v8 n74, May 1989).
An oil spill was caused by a helm lever on an oil tanker. The lever had three positions: Autopilot – Manual –
Disconnected. In a tight passage off English coast, trying to maneuver in a narrow channel with fishing boats, the captain
accidentally pushed the lever too far – past Manual to Disconnected. Since the supertanker turned very slowly anyway, the
crew didn’t realize at first that they weren’t turning at all (feedback). Even then, they had so many other hypotheses for
why the helm wasn’t responding (burned-out fuse, interconnect problem, etc.) that they didn’t think of the lever. The tanker
hit the rocks, and a large oil spill resulted. (Steven Casey, Set Phasers on Stun)

12

Fall 2004 6.831 UI Design and Implementation 12

�����
����������'������
����(��� �

� You are not the user
�Most software engineering is about

communicating with other programmers
�UI is about communicating with users

� The user is always right
�Consistent problems are the system�s fault

� �but the user is not always right
�Users aren�t designers

Unfortunately, user interfaces are not easy to design. You (the developer) are not a typical user. You know far
more about your application than any user will. You can try to imagine being your mother, or your grandma,
but it doesn’t help much. It’s very hard to forget things you know.

This is how usability is different from everything else you learn about software engineering. Specifications,
assertions, and object models are all about communicating with other programmers, who are probably a lot
like us. Usability is about communicating with other users, who are probably not like us.

The user is always right. Don’t blame the user for what goes wrong. If users consistently make mistakes with
some part of your interface, take it as a sign that your interface is wrong, not that the users are dumb. This
lesson can be very hard for a software designer to swallow!

Unfortunately, the user is not always right. Users aren’t oracles. They don’t always know what they want, or
what would help them. In a study conducted in the 1950s, people were asked whether they would prefer lighter
telephone handsets, and on average, they said they were happy with the handsets they had (which at the time
were made rather heavy for durability). Yet an actual test of telephone handsets, identical except for weight,
revealed that people preferred the handsets that were about half the weight that was normal at the time.
(Klemmer, Ergonomics, Ablex, 1989, pp 197-201).

Users aren’t designers, either, and shouldn’t be forced to fill that role. It’s easy to say, “Yeah, the interface is
bad, but users can customize it however they want it.” There are two problems with this statement: (1) most
users don’t, and (2) user customizations may be even worse! One study of command abbreviations found that
users made twice as many errors with their own command abbreviations than with a carefully-designed set
(Grudin & Barnard, “When does an abbreviation become a word?”, CHI ’85). So customization isn’t the
silver bullet.

13

Fall 2004 6.831 UI Design and Implementation 13

�����
�����������������
����)���

� User interface takes a lot of software
development effort
� UI accounts for ~50% of:
�Design time
� Implementation time
�Maintenance time
�Code size

The user interface also consumes a significant portion of software development resources.
One survey of 74 software projects found that user interface code accounted for about half
of the time put towards design, implementation, and maintenance, and constituted about
half the code (Myers & Rosson, “Survey on user interface programming”, CHI ’92).

So UI is an important part of software design.

14

Fall 2004 6.831 UI Design and Implementation 14

����������(�����

� Usability: how well users can use the
system�s functionality
� Dimensions of usability
�Learnability: is it easy to learn?
�Efficiency: once learned, is it fast to use?
�Memorability: is it easy to remember what

you learned?
�Errors: are errors few and recoverable?
�Satisfaction: is it enjoyable to use?

The property we’re concerned with here, usability, is more precise than just how “good”
the system is. A system can be good or bad in many ways. If important requirements are
unsatisfied by the system, that’s probably a deficiency in functionality, not in usability. If
the system is very expensive or crashes frequently, those problems certainly detract from
the user’s experience, but we don’t need user testing to tell us that.

More narrowly defined, usability measures how well users can use the system’s
functionality. Usability has several dimensions: learnability, efficiency, memorability, error
rate/severity, and subjective satisfaction.

Notice that we can quantify all these measures of usability. Just as we can say algorithm X
is faster than algorithm Y on some workload, we can say that interface X is more learnable,
or more efficient, or more memorable than interface Y for some set of tasks and some class
of users.

15

Fall 2004 6.831 UI Design and Implementation 15

����������(�� ��������*����
��
� ��������

� Depends on the user
�Novice users need learnability
� Infrequent users need memorability
�Experts need efficiency

� But no user is uniformly novice or expert
�Domain experience
�Application experience
�Feature experience

The usability dimensions are not uniformly important for all classes of users, or for all
applications. That’s one reason why it’s important to understand your users, so that you
know what you should optimize for. A web site used only once by millions of people – e.g.,
the national telephone do-not-call registry – has such a strong need for ease of learning, in
fact zero learning, that it far outweighs other concerns. A stock trading program used on a
daily basis by expert traders, for whom lost seconds translate to lost dollars, must put
efficiency above all else.

But users can’t be simply classified as novices or experts, either. For some applications
(like stock trading), your users may be domain experts, deeply knowledgeable about the
stock market, and yet still be novices at your particular application. Even users with long
experience using an application may be novices or infrequent users when it comes to some
of its features.

16

Fall 2004 6.831 UI Design and Implementation 16

����������
��+����+���'��������������

������

� Software designers have a lot to worry about:
� Functionality – Usability
� Performance – Size
� Cost – Reliability
� Security – Standards

� Many design decisions involve tradeoffs
among different attributes
� We�ll take an extreme position in this class

Usability doesn’t exist in isolation, of course, and it may not even be the most important
property of some systems. Astronauts may care more about reliability of their navigation
computer than its usability; military systems would rather be secure than easy to log into.
Ideally these should be false dichotomies: we’d rather have systems that are reliable, secure,
and usable. But in the real world, development resources are finite, and tradeoffs must be
made.

In this class, we’ll take an extreme position: usability will be our primary goal.

17

Fall 2004 6.831 UI Design and Implementation 17

������������ ������� �
����,������

Design

ImplementEvaluate

So how do we engineer usability into our systems? By means of a process, with careful
attention to detail. One goal of this course is to give you experience with this usability
engineering process.

18

Fall 2004 6.831 UI Design and Implementation 18

(��� �

� Task analysis
��Know thy user�

� Design guidelines
�Avoid bonehead mistakes
�May be vague or contradictory

The first step of usability engineering is knowing who your users are and understanding
their needs. Who are they? What do they already know? What is their environment like?
What are their goals? What information do they need, what steps are involved in achieving
those goals? These are the ingredients of a task analysis. Often, a task analysis needs to be
performed in the field – interviewing real users and watching them do real tasks.

Design guidelines are an important part of usability engineering. We’ve already mentioned
a few: consistency, affordances, shortcuts, preventing errors. Design guidelines help you
get started, and help avoid the most boneheaded mistakes like the ones we saw at the
beginning of this lecture. But guidelines are heuristics, not hard-and-fast rules. An
interface cannot be made usable merely by slavish adherence to design guidelines, because
guidelines may be vague or contradictory. The user should be in control, says one
guideline, but at the same time we have to prevent errors. Another dictates that the user
should always know what’s happening, but don’t forget to keep the user mental workload
within acceptable limits. Design guidelines help us discuss design alternatives sensibly, but
they don’t give all the answers.

19

Fall 2004 6.831 UI Design and Implementation 19

� ���� ���

� Prototyping
�Cheap, throw-away implementations
�Low-fidelity: paper, Wizard of Oz
�Medium-fidelity: HTML, Visual Basic

� GUI implementation techniques
� Input/output models
�Toolkits
�UI builders

Since we can’t predict usability in advance, we build prototypes – the cheaper, the better.
We want to throw them away. We’ll see that paper is a great prototyping tool!

Eventually, however, the prototypes must give way to an actual, interactive computer
system. A range of techniques for structuring graphical user interfaces have been
developed. We’ll look at how they work, how to use them, and how UI toolkits themselves
are implemented.

20

Fall 2004 6.831 UI Design and Implementation 20

�-������

� Evaluation puts prototypes to the test
� Expert evaluation
�Heuristics and walkthroughs

� Predictive evaluation
�Testing against an engineering model

(simulated user)

� Empirical evaluation
�Watching users do it

Then we evaluate our prototypes – sometimes using heuristics, but more often against real
users. Putting an implementation to the test is the only real way to measure usability.

21

Fall 2004 6.831 UI Design and Implementation 21

������-��(��� �

� Rinse, lather, repeat!

Design

ImplementEvaluate

The most important element of usability engineering is iterative design. That means we
don’t go around the design-implement-evaluate loop just once. We admit to ourselves that
we aren’t going to get it right on the first try, and plan for it. Using the results of evaluation,
we redesign the interface, build new prototypes, and do more evaluation. Eventually,
hopefully, the process produces a sufficiently usable interface.

Many of the techniques we’ll learn in this course are optimizations for the iterative design
process: design guidelines reduce the number of iterations by helping us make better
designs; cheap prototypes and discount evaluation techniques reduce the cost of each
iteration. But even more important than these techniques is the basic realization that in
general, you won’t get it right the first time. If you learn nothing else about user
interfaces from this class, I hope you learn this.

22

Fall 2004 6.831 UI Design and Implementation 22

%��������./01�

� In this course, you�ll learn:
� how to discover users� tasks
� how human capabilities influence usability
� guidelines for good UI design
� the importance of iterative design
� how to build cheap prototypes
� techniques for UI implementation
� how to evaluate UIs
� Expert (heuristic) evaluation
� User testing

� current research in user interfaces

23

Fall 2004 6.831 UI Design and Implementation 23

'
� �������-��

� General information
� Lecture notes
� Problem sets
� Term project
� Readings

