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Our Hall of Fame or Shame candidate for the day is this interface for choosing how a list of database records 
should be sorted.  Think about its advantages and disadvantages, and contemplate alternative designs. 
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Today’s lecture concerns internationalization: supporting users who speak different languages and have 
different cultural conventions.  We’ll talk about some of the reasons why internationalization can be hard, and 
discuss some of the support that exists in GUI toolkits for making it easier. 

A good source of information about this problem is Java Internationalization, by Andy Deitsch and David 
Czarnecki (O’Reilly, 2001).  There’s also a trail in the Java Tutorial about Java’s internationalization features 
(http://java.sun.com/docs/books/tutorial/i18n/index.html).   
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Interfaces with international user populations – such as Microsoft Word, shown here – have to be carefully 
designed to make them easy to adapt to other languages and cultures.  The process of making a user interface 
ready for translation is called internationalization (often called i18n for short – “18” because it replaces 18 
characters in the middle of “internationalization”). 

Essentially, internationalization separates the language-specific parts of the interface from the rest of the code, 
so that those parts can be easily replaced.  The translation is usually done by nonprogrammers, so their job is 
easier if the textual messages are separate from the code.  Actually doing this translation for a particular 
language and culture is called localization. 

One way to understand the difference between these two technical terms is by analogy to portability across 
operating system platforms.  If you write your program carefully so that it doesn’t depend on specific features 
of an operating system or processor, you’ve made it portable.  Making a program portable is analogous to 
internationalizing it.  Actually porting it to another particular platform, e.g. by recompiling it, is analogous to 
localizing it. 

Unfortunately localization is much harder than merely knowing what words to substitute (and online 
translators like Babelfish and Google Translate can only barely do that, so don’t rely on them!)  You can’t 
necessarily rely on bilingual members of your design team, either.  They may be reasonably fluent in the other 
language, but not sufficiently immersed in the culture or national standards to notice all the places where the 
application needs to change.  You are not the user is especially true in internationalization. 
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Here are some of the reasons why internationalization is hard. 

First, every piece of text that might be shown to the user is a potential candidate for translation.  That means 
not just properties of components (like menu items and button labels), but also text drawn with stroke drawing 
calls, and text embedded in pixel images (like this one taken from the MIT EECS web page).  Translation can 
easily change the size or aspect ratio of the text; German labels tend to be much longer than English ones, for 
example. 

Error messages also need to be translated, of course – which is another reason not to expose internal system 
names in error messages.  An English-reading user might be able to figure out what FileNotFoundException 
means, but it won’t internationalize well. 



Here’s a sign from Wales, where official signs are required to be bilingual (English and Welsh).  The English is 
clear enough to English-speaking lorry drivers - but the Welsh actually reads "I am not in the office at the 
moment. Send any work to be translated.”  The translation was outsourced by email, you see… (http://
news.bbc.co.uk/2/hi/uk_news/wales/7702913.stm) 

There’s a larger lesson here that translation without sufficient context can lead to errors.  The BBC article cited 
just above has some amusing examples of other English/Welsh signs that are mistranslated (“staff” => 
“wooden stick”) because the translator wasn’t fully aware of the context.  
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Different languages obviously use scripts other than the Latin alphabet.  Here are some of the scripts that 
Windows, Mac, and web browsers all support. 

It’s important to distinguish between script (or alphabet) and language. Western languages like English, 
French, German, and Italian are different languages that all use the Latin alphabet (basically). Russian, 
Ukrainian, and Bulgarian (among others) use the Cyrillic alphabet. 
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Many scripts are not even written left-to-right; Arabic and Hebrew are the most common languages with 
scripts written right-to-left.  CJK (Chinese, Japanese, Korean) characters are usually written left-to-right, but 
can also appear vertically (top-to-bottom) and occasionally even right-to-left.  Reversing the direction of 
reading requires reversing the entire layout of your screen, since the user is now accustomed to starting from 
the right edge when they scan.  It might even affect the “natural” direction of arrow icons.  The picture above 
shows the Hebrew version of Firefox.  Notice that the menu bar is reversed (it starts from the right, and the 
rightmost menu is the File menu), the toolbar is reversed, and the Back button (which is now the rightmost 
button) is now pointing to the right!  The URL box isn’t reversed, however, because it uses the Latin alphabet, 
not Hebrew.  This is another common wrinkle in right-to-left languages: when they embed foreign words, or 
Arabic numbers, the embedded words go in left-to-right order.  So the text might be constantly switching 
direction. 
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Sorting, or collation, is another way that languages differ.  In software, each character is represented by a 
number.  This mapping is the character encoding.  Java, for example, uses Unicode, representing each 
character by a 16-bit number.  But the ordering of these numbers doesn’t necessarily match the conventional 
ordering of the characters in the language, so sorting text with < or String.compareTo() is almost certainly 
wrong.  It’s even wrong for English!   Unicode groups the uppercase and lowercase letters separately, so that 
the sort order by < would be ABC…XYZ…abc…xyz… 

Similarly, in most European languages, accented characters are sorted with the plain version of the character, 
even though the Unicode characters may be nowhere near each other in numerical order. And that general rule 
is not true in Norwegian, where å actually appears at the end of the alphabet, after z. 



Number formats and date formats also vary – not just by language, but by country.  In the US, commas are 
used for millions and thousands, and a period for the decimal point, as in “72,350.55”.  But the convention in 
Germany is precisely the opposite: “72.350,55”.  Even countries that share the same language may differ on 
conventional formats.  Americans tend to write dates as MM/DD/YY, but British write DD/MM/YY (as does 
most of the rest of the world). 

The target for localization therefore needs to be specified by a language/country pair, also called a locale, such 
as US English, UK English, or Canadian French. 
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Localizing a user interface requires knowing about the cultural associations attached to symbols or colors, and 
making sure you don’t send the wrong message. 

For example, colors have different meanings in different cultures.  In East Asia, particularly China, white is 
associated with death, and is used as a color theme for funerals.  In the West, on the other hand, white is a 
symbol of purity, and brides wear white at their weddings. Traditional Chinese weddings involve a lot of red, 
because it symbolizes luck.  Western cultures don’t have the same association for red. 



Icons must also be carefully chosen, or replaced when the interface is localized.  Metaphorical icons that refer 
to everyday objects like mailboxes and stop signs aren’t necessarily recognizable, because the objects may 
look different in different countries.  (Stop signs are actually pretty universal, however  – I had to look hard to 
find a stop sign that wasn’t a red octagon, like this Japanese inverted triangle.)  Hand gestures pictured as icons 
may actually be offensive in some countries.  And visual puns are always a bad idea – an English-speaking 
designer might think it’s cute to use a picture of a table (the furniture) to represent table (the 2D grid), because 
the words are the same in English.  But the words in German are tisch (furniture) and tabelle (grid), so a 
German may find the joke incomprehensible. 
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To answer the picoquiz questions in this lecture, go to: 
http://courses.csail.mit.edu/6.831/2013/picoquiz?lectureId=19 
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Now that we’ve surveyed the challenges, let’s talk about some solutions. Modern UI toolkits provide support 
that make it easier to implement internationalized interfaces. 
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Java, for example, has a framework called resource bundles that allow textual messages to be stored 
separately from the code,  but as loadable resources in JAR files, so that an application can be localized simply 
by replacing those text messages.  The messages are referred to by names, such as bundle.getString(“file-
menu-label”).   

This is an example of the general strategy for internationalization.  First, use abstraction to isolate the parts of 
your system that need to change from one locale to another, separating it from the rest of your program.  (This 
is an application of a familiar software engineering rule – if you know something will change, isolate it.)  
Second, as much as possible, design these locale-specific parts so that they don’t require reading source code 
or recompiling the program, so that localization can be done by nonprogrammers. 

Internationalization gets a little tricky when a message has dynamic parts, like “25 users have visited since 
January 1”.  In an uninternationalized program, you might simply concatenate in your source code:  num + “ 
users have visited since “ + date. For internationalization, you need to give the translator flexibility to put the 
dynamic parts anywhere, using a format like “%1 users have visited since %2”, so that it could be rewritten as 
“Since %2, %1 users have visited” if the language demands it.  And you also need to think about plurals, 
usually by having different versions of the entire message that depend on the value of num: 

num == 0 => “%1 users have visited since %2” 

num == 1 => “%1 user has visited since %2” 

num > 1 => “%1 users have visited since %2” 

Java has a class ChoiceFormatter that makes this task somewhat easier.  But be careful – Arabic has a different 
plural form when num == 2 than when num > 2. (http://en.wikipedia.org/wiki/Grammatical_number). 

 



To handle languages that read right-to-left, UI toolkits like Java provide support for bidirectional text 
(sometimes called “BiDi” or BIDI for short).  The trickiest part here is that Unicode strings may (and often 
do!) mix characters from multiple scripts: Arabic and English, for example.  A good UI toolkit will ensure that 
when you draw such a string to the screen, it draws the appropriate characters in the appropriate order.  There 
must be a base direction that determines whether the whole string starts at the left or the right; if the interface 
is primarily English, for example, then the base direction should be left to right, but if it’s primarily Arabic, the 
base direction should be right to left.  To avoid messing up bidirectionality, don’t try to draw a sentence in little 
pieces; instead, put together a string first, and draw it all at once, letting the toolkit figure it out.  (If you’re 
using message files properly, of course, this will happen anyway.) 

International toolkits must also support bidirectional text editing, making (for example) arrow keys and 
selection work in the correct direction for the script. 

Automatic layout managers can also support bidirectionality.  In Java, for example, FlowLayout can lay out 
elements either left-to-right or right-to-left, depending on the current global language setting.  In HTML, the 
DIR attribute specifies the base direction of text (left-to-right or right-to-left). 

 

 

18 



For handing variation in number, date, and currency formats, you should rely on libraries, rather than rolling 
your own parsers and formatters. For web programming, an example Javascript library is Globalize, which 
includes built-in formatting for over 350 cultures. 

19 



Finally, to handle other changes that localization might impose, it helps to isolate details of the presentation.  
Images and icons might need language translation (if they contain text) or cultural translation (if they use 
unfamiliar symbols).  Fonts might need to change to handle different scripts, since fonts rarely have glyphs for 
every script in Unicode.  And colors might need to change if they have cultural problems. 

For web programming, CSS makes this kind of separation easier. 
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To answer the picoquiz questions in this lecture, go to: 
http://courses.csail.mit.edu/6.831/2013/picoquiz?lectureId=19 
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