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For today’s hall of fame and shame, let’s talk about Hipmunk.com, a flight searching web site.  Let’s discuss: 

- simplicity 

- error handling  

- graphic design and use of visual variables 

- efficiency 
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Today’s lecture is about accessibility, which generally means making it possible for users with impairments to 
use a graphical user interface.  We’ll talk about the kinds of impairments we’ll be concerned with; the 
technology (both software and hardware) that help users deal with them; and some guidelines for designing 
UIs for accessibility. 

MIT has a new course on assistive technology (6.811 Principles and Practices of Assistive Technology) that 
covers these topics in greater depth, and includes a design project in which you work on solving a problem a 
particular client with a disability. 



We’ll focus on physical impairments for this lecture, specifically problems in vision, hearing, or motor control, 
because that’s how “accessibility” is generally understood. But note that there are other impairments that are 
relevant to making a user interface usable by a wide spectrum of people.  Some have cognitive disabilities, like 
difficulty learning or paying attention.  Others have difficulty reading, either because they never learned or 
because they read a language different from yours.  (We’ll talk about this last one in the internationalization 
lecture coming up.) 

We’ve talked about one form of vision impairment already: color blindness.  Even more common than that, of 
course, is impaired visual acuity, i.e. inability to focus clearly.  For most people, visual acuity problems can be 
corrected with glasses or contact lenses, but some have uncorrectably bad vision. Roughly a million Americans 
are legally blind (unable to read even the biggest letter on an eye chart, even with corrective lenses).  Perhaps 
10% of them are totally blind, unable to sense light at all.   

Hearing impairments affect the ability to sense sound intensity, and range in a spectrum from reduced 
sensitivity to complete loss.  Hearing impairments often depend on sound frequency; a person may hear lower 
frequencies well, but not high frequencies. 

Motor impairments come in many different forms, and have many different causes.  Sufferers of cerebral 
palsy experience uncontrollable tremors and spasms, making it difficult to make fine motor movements.  
Muscular dystrophy and multiple sclerosis can make muscles weak, and sufferers may tire easily when doing 
repeated or large muscle movements.  Neural damage can cause complete paralysis of limbs. 
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But physical impairments, or their effects, aren’t limited to people with congenital diseases or trauma.  Aging 
causes all three kinds of impairments. We’ve already discussed some of the impacts of aging on color vision.  
Older adults may also have reduced acuity, reduced hearing, and reduced mobility (specifically arthritis, which 
involves tremors, pain, and fatigue). 

Overuse can also cause impairment to younger people, as if aging prematurely.  Most people don’t blind 
themselves by staring at the sun, but some lose their hearing prematurely by working in extremely loud 
environments (or listening to iPods?).  Repetitive stress injury (RSI) is a motor impairment caused by 
excessive computer use (among other activities), with symptoms including pain, numbness, and weakness. 

Finally, all of us can experience situational disabilities: temporary conditions of ourselves or our environment 
that effectively cause impairment.  For example, when you’re driving a car, your hands and eyes are occupied 
with the driving task, so with respect to an in-dashboard computer, you’re experiencing visual and motor 
impairments.  Similarly, when you’re walking down the street, your visual abilities are diminished (because 
you have to watch where you’re going), and your ability to do fine motor control is reduced as well (because 
every step jars your entire body).  In a noisy environment (say, the deck of an aircraft carrier), you can’t hear.  
When the sunlight is glaring on your laptop screen, you can’t see. 

The take-away message from this is that impairments affect everybody, and vision, hearing, and motor lie on a 
spectrum of ability that varies widely between users and over time.  So we should take them into account when 
we’re designing. 
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Universal design is a school of thought that takes this fact explicitly to heart, by seeking to design for all 
users, across as much of the spectrum of capability as possible. Contrast this with the attitude that is implicit in 
this class, and in most actual design, where we mainly design for the typical user, and then (8 weeks into the 
course?) discuss how to make it “accessible” to everybody else.  Universal design challenges us to think about 
supporting a wide range of capability from the start. 

The proponents of Universal Design (http://www.design.ncsu.edu/cud/) have put forth seven guiding 
principles, listed here.  Several are already familiar to us (simplicity, learnability, visibility, errors), and several 
are more relevant mainly to physical design (effort, size, space).  But the first principle is the heart of the 
universal design philosophy: equitable use.  As much as possible, all users should have the same interface, so 
that groups with differing abilities are not stigmatized.  (If the identical interface isn’t possible, then provide 
equivalent interfaces.) 

Good universal designs are not dumbed down to make them universal; you shouldn’t sacrifice efficiency or 
flexibility for typical users in order to enable users with reduced ability.  Instead, a good universal design has 
features that make the design better for everyone.  Classic examples are kitchen tools with fat, textured handles 
(like the vegetable peeler shown here); not only are they easier for arthritis sufferers to grip, they’re more 
comfortable and less error-prone for typical users too.  Similarly, a sidewalk curb cut not only enables 
wheelchair users, but also parents with strollers, travellers with luggage, and people pushing carts. Even 
walkers may find the ramp more convenient than a step. 

It’s not always clear how to find a universal design, but it’s a goal worth striving toward. 
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For using computers, users with physical impairments use a variety of assistive technology, some hardware, 
some software. 

Screen magnifier software magnifies part of the display to make it easier to read, which helps users who have 
reduced acuity but are not totally blind.  Screen readers help the totally blind, by reading the contents of the 
display aloud as speech.  For totally blind users who know Braille, a screen reader can be connected to a 
Braille display, which lets them read the screen privately (and quietly) and probably faster as well.  

For hearing-impaired users, graphical user interfaces pose fewer problems, because far less information is 
conveyed by auditory cues.  System sounds (like beeps) may be translated into a screen flash; videos may 
include closed captioning. 

On the input side, there are alternative pointing devices.  Eye gaze or head pose tracking can move the mouse 
cursor around the screen without the use of the hands.  Puff-and-sip devices (in which the user blows or sucks 
a tube) can be used to click a button, often in combination with a mouth-driven joystick.  Users with less 
extreme motor impairments may use touchpads or trackballs, which are less tiring than mice because they 
require smaller movements.  The mouse cursor can also be moved around by keyboard keys; Windows and 
Mac both have this feature built-in. 

Note that users of screen readers are not likely to use a pointing device at all, because they can’t see a mouse 
cursor or targets on the screen.  So totally blind users typically use a keyboard exclusively. 

For keyboard input by severely motor-impaired users, a pointing device can be combined with an onscreen 
keyboard.  Keyboard driver software can often be adjusted to make it easier to use, e.g. turning off autorepeat 
so that keys don’t have to be released quickly, or making modifier keys (like Shift and Control) “sticky” so that 
the user doesn’t have to hold down multiple keys at once. 

Speech recognition offers another way to give both command and text input without using the hands. 
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(contributed by Christy Swartz, spring 2012) 

Dyslexia is a cognitive impairment that affects reading – people with dyslexia tend to see some letters rotated, 
or switched with other letters. It's a small population (although, it is estimated that a large number of people 
who have reading difficulties actually have dyslexia, which has no effect on intelligence, only reading ability), 
but nonetheless should be kept in mind when designing websites. 

A simulation of dyslexia can be found at http://webaim.org/simulations/dyslexia 

If anyone wants to take a look at a site that is a fantastic example of good accessibility for dyslexics, here it is: 
http://www.headstrongnation.org/ This site has a built in screen reader. Dyslexics have a very hard time 
reading long chunks of text, so they use screen readers often, but, as you can imagine, screen readers are 
designed for blind people, and not dyslexics, who can easily point a mouse. So this site allows you to select a 
chunk of text and the site will read it to you.  

Also, fonts are inherently bad for dyslexics; many letters, if rotated, can appear to be other letters (p and d, for 
example), and makes it very difficult for dyslexics to untangle them. There are now several fonts that are more 
readable for people with dyslexia.  The first, Dyslexie, is explained in a youtube video (http://
www.youtube.com/watch?v=VLtYFcHx7ec).  Recently, a free font called OpenDyslexic (http://
opendyslexic.org) has become available.  A key idea in both fonts is to strengthen the lower part of each letter, 
increasing the stroke thickness near the baseline, so that the letter feels “weighted” at the bottom – less 
symmetrical, and less likely to be mentally rotated by the reader. 
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Now let’s discuss some specific guidelines for creating accessible interfaces.  Most of these guidelines are 
targeted at making your interface amenable to assistive technology, e.g. helping a screen reader do a better job 
of translating the display into text. 

The guidelines that follow are summarized from two sources.  Section 508 is an accessibility standard for web 
sites and software created by US government agencies or government contractors.  Anybody who wants to sell 
software to the US government must follow the Section 508 rules, which cover both desktop software and web 
sites.  The W3C Accessibility Initiative is a group in the World Wide Web Consortium that has produced a list 
of (voluntary) accessibility guidelines for web sites. 

Section 508 rules: 

http://www.section508.gov/index.cfm?FuseAction=Content&ID=12#Software 

 

W3C guidelines: 

http://www.w3.org/TR/WAI-WEBCONTENT/ 
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Since some users will be less able or unable to use a pointing device (e.g. users with screen readers), an 
accessible interface should support keyboard alternatives for all interactions.  Menus should be controllable by 
the keyboard, either using accelerators or by allowing navigation around the menu.  Similarly, the user should 
be able to move the keyboard focus around a form or activate a link in a web page by keyboard alone. 
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An accessible interface should be amenable to screen reading.  All visual content should have textual 
alternatives; i.e., images should have captions or labels describing or naming their contents, so that screen 
reading software can articulate it. 

Widgets, like textboxes and checkboxes, should have labels associated with them.  This association can’t be 
merely visual (i.e. “From:” happens to be next to the textbox), but programmatically available to the screen 
reader, so that the screen reader can ask for the label of that textbox and get “From address” or something 
similar back.  The interface that screen readers use to access this information is called an “accessibility API”; 
we’ll talk about the APIs for Java and HTML later in this lecture. 

Screen readers also need to find out: the current value of a textbox or other widget; the widget with the 
keyboard focus; and the location of the text selection in a textbox. 

For web pages with hyperlinks, the links should be clearly labeled with the identity of the target page, not 
something vague like “click here”.  This is because users of screen readers don’t necessarily read the entire 
display linearly, from start to end.  This would be painfully inefficient.  Instead, they skip through, scanning the 
page aurally much as users with normal vision would scan it visually. A screen reader can be directed to read 
all the links, skipping over other text, so the links should be self-descriptive. 
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IBM Research Tokyo has produced an interesting tool called aDesigner (for “accessibility Designer”) that 
allows sighted designers to visualize the screen-reader usability of a web page.  Here it is in action – the 
original web page is shown on the left, and a “screen reader equivalent” of the web page is shown on the right.  
The screen reader version is intended to simulate the experience that a blind user of a screen reader would have 
when using the web page.  It replaces images with their alt text.  It also darkens the background of text 
proportionally to the minimum time it would take to reach the text (assuming the usual navigation features in 
screen readers: jumping from header to header, and jumping from link to link, and listening to text).  Hovering 
over the text shows a popup with the actual time (here, “111 seconds from top” for the search box at the bottom 
of this web page). 

aDesigner is freely available, built on top of Eclipse, but only runs on Windows. (http://www.eclipse.org/actf/
downloads/tools/aDesigner/) 
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For the sake of hearing-impaired users, don’t rely on sound as the only channel by which some bit of 
information is delivered.  To get the user’s attention, don’t just beep; briefly flash a window or the screen as 
well.  Videos should include closed-captioning information. 
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Users with impaired vision may prefer to use high-contrast colors, so allow the user to change the color 
scheme if necessary.  Similarly, allow the user to enlarge the font size for easier readability.   

We’ve already discussed not relying on color as a sole indicator for conveying information, because of color 
blindness.  Use secondary cues too. 
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Java and HTML both offer built-in ways to make your interface more accessible. 

The Java Accessibility API provides an interface for screen readers to inspect a Swing interface.  All built-in 
Swing widgets implement it, so by using widgets, you get accessibility to screen readers for free.  The API has 
one method, getAccessibleContext(), which returns an object containing information about the widget, such as 
a label for it, description, its current value, its current text selection, etc.  Major desktop systems (Windows, 
Mac, Gnome, KDE) have their own equivalents for this API, and Java has a bridge that allows your Swing 
interface to be inspected through the platform-specific API. 

In HTML, probably the most well-known accessibility feature is the alt attribute on images, which specifies a 
caption or description of the image for the sake of a screen reader.  Other elements (like frames) have a title 
attribute for the same purpose.  Textboxes, checkboxes, and other form controls can be programmatically 
labeled by the <label> element. 

For keyboard operation of a web page, HTML offers the accesskey attribute, which can be added to links and 
form controls among other elements.  For example, accesskey=“c” specifies that Alt-C (or some other browser-
specific modifier) should navigate to or invoke the element.  Unfortunately it’s difficult to avoid conflicts 
between accesskeys specified by the web page and shortcuts used by the browser itself, or by the user’s screen 
reader.  Needless to say, screen reader users depend heavily on these shortcuts, and a web page that overrides 
them will create serious, painful mode errors.  Some experts deprecate the accesskey attribute, favoring other 
forms of keyboard navigation around a page instead (see Jukka Korpela, “Using accesskey attribute in HTML 
forms and links”, http://www.cs.tut.fi/~jkorpela/forms/accesskey.html; also “Using Accesskeys - Is it worth 
it?”, http://www.wats.ca/show.php?contentid=32). 

Finally, CSS allows specification of audio styles for a screen reader, so that volume and pacing and pitch can 
be designed by a web page author. 
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To answer the picoquiz questions in this lecture, go to: 
http://courses.csail.mit.edu/6.831/2013/picoquiz?lectureId=18 
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