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This lecture’s candidate for the Hall of Fame & Shame is the Alt-Tab window switching interface in Microsoft 
Windows.  This interface has been copied by a number of desktop systems, including KDE, Gnome, and even 
Mac OS X.   

For those who haven’t used it, here’s how it works.  Pressing Alt-Tab makes this window appear.  As long as 
you hold down Alt, each press of Tab cycles to the next window in the sequence.  Releasing the Alt key 
switches to the window that you selected. 

 

We will talk about Alt-Tab from the usability perspective. Think about: 

-  Is it learnable? 

-  Is it efficient?  

-  What about errors and safety? 
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For comparison, we’ll also look at the Exposé (now Mission Control) feature in Mac OS X.  When you push 
F3 on a Mac, it displays all the open windows – even hidden windows, or windows covered by other windows 
– shrinking them as necessary so that they don’t overlap.  Mousing over a window displays its title, and 
clicking on a window brings that window to the front and ends the Exposé mode, sending all the other 
windows back to their old sizes and locations. 

 

Think about the usability of Exposé: 

-  Is it learnable? 

-  Is it efficient?  

-  What about errors and safety? 

-  How does it compare and contrast with Alt-Tab? Which is more efficient for what tasks, and why? 
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Today’s lecture is the first in a series of lectures about how graphical user interfaces are implemented.  Today 
we’ll take a high-level look at the software architecture of GUI software, focusing on the design patterns that 
have proven most useful.  Three of the most important patterns are the model-view-controller abstraction, 
which has evolved somewhat since its original formulation in the early 80’s; the view tree, which is a central 
feature in the architecture of every important GUI toolkit; and the listener pattern, which is essential to 
decoupling the model from the view and controller.   

 

We’ll also look at the three main approaches to implementing GUIs. We won’t get into the details of HTML, 
CSS, Javascript, and JQuery here: they are well-covered in the labs we hosted earlier this semester (see course 
web site for materials). Also note that the backend development of web applications falls outside the scope of 
the course material in this class.  So we won’t be talking about things like SQL, PHP, Ruby on Rails, or even 
AJAX.   
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The first important pattern we’ll talk about today is the view tree. A view is an object that covers a certain area 
of the screen, generally a rectangular area called its bounding box. The view concept goes by a variety of 
names in various UI toolkits.  In Java Swing, they’re JComponents; in HTML, they’re elements or nodes; in 
other toolkits, they may be called widgets, controls, or interactors. 

Views are arranged into a hierarchy of containment, in which some views contain other views. Typical 
containers are windows, panels, and toolbars. The view tree is not just an arbitrary hierarchy, but is aligned 
with the conceptual structure of the data, so that if a parent is not displayed, its children usually won’t be 
displayed either. In old frameworks (such as Swing), a child was always visually contained (that is, spatially on 
the 2d display) in its parent’s bounding box, but this is not true of the web browser view tree (called the DOM), 
which allows a designer to position a child independently of the parent. 

6 



Virtually every GUI system has some kind of view tree.  The view tree is a powerful structuring idea, which is 
loaded with responsibilities in a typical GUI: 

Output.  Views are responsible for displaying themselves, and the view hierarchy directs the display process. 
GUIs change their output by mutating the view tree.  For example, in the wiring diagram editor shown on the 
previous slide, the wiring diagram is changed by adding or removing objects from the subtree representing the 
drawing area.  A redraw algorithm automatically redraws the affected parts of the subtree.  

Input. Views can have input handlers, and the view tree controls how mouse and keyboard input is processed. 

Layout. The view tree controls how the views are laid out on the screen, i.e. how their bounding boxes are 
assigned.  An automatic layout algorithm automatically calculates positions and sizes of views. 

We’ll look at more about each of these areas in later lectures. 
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•  To handle mouse input, for example, we can attach a handler to the view that is called when the mouse is 
clicked on it.  Handlers are variously called listeners, event handlers, subscribers, and observers. 
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•  GUI input event handling is an instance of the Listener pattern (also known as Observer and Publish-
Subscribe). In the Listener pattern, an event source generates a stream of discrete events, which correspond to 
state transitions in the source.  One or more listeners register interest (subscribe) to the stream of events, 
providing a function to be called when a new event occurs.  In this case, the mouse is the event source, and the 
events are changes in the state of the mouse: its x,y position or the state of its buttons (whether they are pressed 
or released).  Events often include additional information about the transition (such as the x,y position of 
mouse), which might be bundled into an event object or passed as parameters. 
•  When an event occurs, the event source distributes it to all subscribed listeners, by calling their callback 
functions. 
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To answer the picoquiz questions in this lecture, go to: 
http://courses.csail.mit.edu/6.831/2013/picoquiz?lectureId=6 
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We’ve seen how GUI programs are structured around a view tree, and how input events are handled by 
attaching listeners to views.  This is the start of a separation of concerns – output handled by views, and input 
handled by listeners. 

But we’re still missing the application itself – the backend that actually provides the information to be 
displayed, and computes the input that is handled. 
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The model-view-controller pattern, originally articulated in the Smalltalk-80 user interface, has strongly 
influenced the design of UI software ever since.  In fact, MVC may have single-handedly inspired the software 
design pattern movement; it figures strongly in the introductory chapter of the seminal “Gang of Four” book 
(Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Software). 

MVC’s primary goal is separation of concerns.  It separates the user interface frontend from the application 
backend, by putting backend code into the model and frontend code into the view and controller.  MVC also 
separates input from output; the controller is supposed to handle input, and the view is supposed to handle 
output. 

The model is responsible for maintaining application-specific data and providing access to that data.  Models 
are often mutable, and they provide methods for changing the state safely, preserving its representation 
invariants. OK, all mutable objects do that.  But a model must also notify its clients when there are changes to 
its data, so that dependent views can update their displays, and dependent controllers can respond 
appropriately.  Models do this notification using the listener pattern, in which interested views and controllers 
register themselves as listeners for change events generated by the model. 

View objects are responsible for output.  A view usually occupies some chunk of the screen, usually a 
rectangular area.  Basically, the view queries the model for data and draws the data on the screen.  It listens for 
changes from the model so that it can update the screen to reflect those changes. 

Finally, the controller handles the input.  It receives keyboard and mouse events, and instructs the model to 
change accordingly. 
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In principle, this separation has several benefits.  First, it allows the interface to have multiple views showing 
the same application data.  For example, a database field might be shown in a table and in an editable form at 
the same time.  Second, it allows views and models to be reused in other applications. The MVC pattern 
enables the creation of user interface toolkits, which are libraries of reusable interface objects. 

 



A simple example of the MVC pattern is a text field widget (this is Java Swing’s text widget).  Its model is a 
mutable string of characters.  The view is an object that draws the text on the screen (usually with a rectangle 
around it to indicate that it’s an editable text field).  The controller is an object that receives keystrokes typed 
by the user and inserts them in the string. Note that the controller may signal a change in the view (here, 
moving the cursor) even when there is no change in the underlying model. 

 

Instances of the MVC pattern appear at many scales in GUI software.  At a higher level, this text field might be 
part of a view (like the address book editor), with a different controller listening to it (for text-changed events), 
for a different model (like the address book).  But when you drill down to a lower level, the text field itself is 
an instance of MVC. 
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Here’s a larger example, in which the view is a filesystem browser (like the Mac Finder or Windows Explorer), 
the model is the disk filesystem, and the controller is an input handler that translates the user’s keystrokes and 
mouse clicks into operations on the model and view. 
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The MVC pattern has a few problems when you try to apply it, which boil down to this: you can’t cleanly 
separate input and output in a graphical user interface. Let’s look at a few reasons why. 

First, a controller often needs to produce its own output. The view must display affordances for the controller, 
such as selection handles or scrollbar thumbs.  The controller must be aware of the screen locations of these 
affordances.  When the user starts manipulating, the view must modify its appearance to give feedback about 
the manipulation, e.g. painting a button as if it were depressed. 

Second, some pieces of state in a user interface don’t have an obvious home in the MVC pattern.  One of those 
pieces is the selection.  Many UI components have some kind of selection, indicating the parts of the interface 
that the user wants to use or modify.  In our text box example, the selection is either an insertion point or a 
range of characters. 

Which object in the MVC pattern should be responsible for storing and maintaining the selection?  The view 
has to display it, e.g. by highlighting the corresponding characters in the text box.  But the controller has to use 
it and modify it.  Keystrokes are inserted into the text box at the location of the selection, and clicking or 
dragging the mouse or pressing arrow keys changes the selection. 

Perhaps the selection should be in the model, like other data that’s displayed by the view and modified by the 
controller?  Probably not.  Unlike model data, the selection is very transient, and belongs more to the frontend 
(which is supposed to be the domain of the view and the controller) than to the backend (the model’s concern).  
Furthermore, multiple views of the same model may need independent selections.  In Emacs, for example, you 
can edit the same file buffer in two different windows, each of which has a different cursor. 

So we need a place to keep the selection, and similar bits of data representing the transient state of the user 
interface.  It isn’t clear where in the MVC pattern this kind of data should go. 
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In principle, it’s a nice idea to separate input and output into separate, reusable classes.  In reality, it isn’t 
always feasible, because input and output are tightly coupled in graphical user interfaces.  As a result, the 
MVC pattern has largely been superseded by what might be called Model-View, in which the view and 
controllers are fused together into a single class, often called a component or a widget. 

Most of the widgets in a GUI toolkit are fused view/controllers like this; you can’t, for example, pull out the 
scrollbar’s controller and reuse it in your own custom scrollbar. Internally, the scrollbar probably follows a 
model-view-controller architecture, but the view and controller aren’t independently reusable. 



Partly in response to this difficulty, and also to provide a better decoupling between the model and the view, 
some definitions of the MVC pattern treat the controller less as an input handler and more as a mediator 
between the model and the view. 

In this perspective, the view is responsible not only for output, but also for low-level input handling, so that it 
can handle the overlapping responsibilities like affordances and selections. 

But listening to the model is no longer the view’s responsibility.  Instead, the controller listens to both the 
model and the view, passing changes back and forth.   The controller  receives high-level input events from the 
view, like selection-changed, button-activated, or textbox-changed, rather than low-level input device events. 

The Mac Cocoa framework uses this approach to MVC. 
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To answer the picoquiz questions in this lecture, go to: 
http://courses.csail.mit.edu/6.831/2013/picoquiz?lectureId=6 
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Now let’s talk about how to construct the view tree, which will be a tale of three paradigms.  

In procedural style, the programmer has to say, step-by-step, how to reach the desired state.  There’s an 
explicit thread of control.  This means you’re writing code (in, say, Javascript) that calls constructors to create 
view objects, sets properties of those objects, and then connects them together into a tree structure (by calling, 
say, appendChild() methods). Virtually every GUI toolkit offers an API like this for constructing and mutating 
the view tree. 

In declarative style, the programmer writes code that directly represents the desired view tree.  There are 
many ways to describe tree structure in textual syntax, but the general convention today is to use an HTML/
XML-style markup language.  There’s no explicit flow of control in a declarative specification of a tree; it 
doesn’t do, it just is.  An automatic algorithm translates the declarative specification into runtime structure or 
behavior. 

Finally, in direct manipulation style, the programmer uses a direct-manipulation graphical user interface to 
create the view tree.  These interfaces are usually called GUI builders, and they offer a palette of view object 
classes, a drawing area to arrange them on, and a property editor for changing their properties. 

All three paradigms have their uses, but the sweet spot for GUI programming basically lies in an appropriate 
mix of declarative and procedural – which is what HTML/Javascript provides. 
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Our first example of declarative UI programming is a markup language, such as HTML. A markup language 
provides a declarative specification of a view hierarchy.  An HTML element is a component in the view 
hierarchy.  The type of an element is its tag, such as div, button, and img.  The properties of an element are its 
attributes.  In the example here, you can see the id attribute (which gives a unique name to an element) and 
the src attribute (which gives the URL of an image to load in an img element); there are of course many others. 

There’s an automatic algorithm, built into every web browser, that constructs the view hierarchy from an 
HTML specification – it’s simply an HTML parser, which matches up start tags with end tags, determines 
which elements are children of other elements, and constructs a tree of element objects as a result.  So, in this 
case, the automatic algorithm for this declarative specification is pretty simple. 
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Here’s procedural code that generates the same HTML view tree, using Javascript and the Document Object 
Model (DOM). DOM is a standard set of classes and methods for interacting with a tree of HTML or XML 
objects procedurally.  DOM interfaces exist not just in Javascript, which is the most common place to see it, 
but also in Java and other languages. 

Note that the name DOM is rather unfortunate from our point of view.  It has nothing to do with “models” in 
the sense of model-view-controller – in fact, the DOM is a tree of views.  It’s a model in the most generic sense 
we discussed in the Learnability lecture, a set of parts and interactions between them, that allows an HTML 
document to be treated as objects in an object-oriented programming language. 

Most people ignore what DOM means, and just use the word (pronouncing it “Dom” as in “Dom DeLouise”).  
In fact DOM is often used to refer to the view tree. 

Compare the procedural code here with the declarative code earlier. 

Raw DOM programming is painful, and worth avoiding.  Instead, there are toolkits that substantially simplify 
procedural programming in HTML/Javascript -- jQuery is a good example, and the one we’ll be using. 
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Now that we’ve seen our first simple example of declarative UI – HTML – let’s consider some of the 
advantages and disadvantages. 

First, the declarative code is usually more compact than procedural code that does the same thing.  That’s 
mainly because it’s written at a higher level of abstraction: it says what should happen, rather than how. 

But the higher level of abstraction can also make declarative code harder to debug.  There’s generally no 
notion of time, so you can’t use techniques like breakpoints and print statements to understand what’s going 
wrong.  The automatic algorithm that translates the declarative code into working user interface may be 
complex and hard to control – i.e., small changes in the declarative specification may cause large changes in 
the output. Declarative specs need debugging tools that are customized for the specification, and that give 
insight into how the spec is being translated; without those tools, debugging becomes trial and error. 

On the other hand, an advantage of declarative code is that it’s much easier to build authoring tools for the 
code, like HTML editors or GUI builders, that allow the user interface to be constructed by direct manipulation 
rather than coding.  It’s much easier to load and save a declarative specification than a procedural specification.  
Some GUI builders do use procedural code as their file format – e.g., generating Java code and automatically 
inserting it into a class.  Either the code generation is purely one-way (i.e., the GUI builder spits it out but can’t 
read it back in again), or the procedural code is so highly stylized that it amounts to a declarative specification 
that just happens to use Java syntax.  If the programmer edits the code, however, they may deviate from the 
stylization and break the GUI builder’s ability to read it back in. 

 



To answer the picoquiz questions in this lecture, go to: 
http://courses.csail.mit.edu/6.831/2013/picoquiz?lectureId=6 
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