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The 2010 Fall Issue of AI Magazine includes an article on "Building Watson: An Overview of the
DeepQA Project," written by the IBM Watson Research Team, led by David Ferucci. Read about this
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Abstract

IBM Research undertook a challenge to build a computer system that could compete at the human
champion level in real time on the American TV quiz show, Jeopardy. The extent of the challenge
includes fielding a real-time automatic contestant on the show, not merely a laboratory exercise. The
Jeopardy Challenge helped us address requirements that led to the design of the DeepQA architecture
and the implementation of Watson. After three years of intense research and development by a core
team of about 20 researchers, Watson is performing at human expert levels in terms of precision,
confidence, and speed at the Jeopardy quiz show. Our results strongly suggest that DeepQA is an
effective and extensible architecture that can be used as a foundation for combining, deploying,
evaluating, and advancing a wide range of algorithmic techniques to rapidly advance the field of
question answering (QA).

The goals of IBM Research are to advance computer science by exploring new ways for computer
technology to affect science, business, and society. Roughly three years ago, IBM Research was
looking for a major research challenge to rival the scientific and popular interest of Deep Blue, the
computer chess-playing champion (Hsu 2002), that also would have clear relevance to IBM business
interests.

With a wealth of enterprise-critical information being captured in natural language documentation of
all forms, the problems with perusing only the top 10 or 20 most popular documents containing the
user’s two or three key words are becoming increasingly apparent. This is especially the case in the
enterprise where popularity is not as important an indicator of relevance and where recall can be as
critical as precision. There is growing interest to have enterprise computer systems deeply analyze the
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breadth of relevant content to more precisely answer and justify answers to user’s natural language
questions. We believe advances in question-answering (QA) technology can help support professionals
in critical and timely decision making in areas like compliance, health care, business integrity,
business intelligence, knowledge discovery, enterprise knowledge management, security, and
customer support. For researchers, the open-domain QA problem is attractive as it is one of the most
challenging in the realm of computer science and artificial intelligence, requiring a synthesis of
information retrieval, natural language processing, knowledge representation and reasoning, machine
learning, and computer-human interfaces. It has had a long history (Simmons 1970) and saw rapid
advancement spurred by system building, experimentation, and government funding in the past
decade (Maybury 2004, Strzalkowski and Harabagiu 2006).

With QA in mind, we settled on a challenge to build a computer system, called Watson,* which could
compete at the human champion level in real time on the American TV quiz show, Jeopardy. The
extent of the challenge includes fielding a real-time automatic contestant on the show, not merely a
laboratory exercise.

Jeopardy! is a well-known TV quiz show that has been airing on television in the United States for
more than 25 years (see the Jeopardy! Quiz Show sidebar for more information on the show). It pits
three human contestants against one another in a competition that requires answering rich natural
language questions over a very broad domain of topics, with penalties for wrong answers. The nature
of the three-person competition is such that confidence, precision, and answering speed are of critical
importance, with roughly 3 seconds to answer each question. A computer system that could compete
at human champion levels at this game would need to produce exact answers to often complex
natural language questions with high precision and speed and have a reliable confidence in its
answers, such that it could answer roughly 70 percent of the questions asked with greater than 8o
percent precision in 3 seconds or less.

Finally, the Jeopardy Challenge represents a unique and compelling Al question similar to the one
underlying DeepBlue (Hsu 2002) — can a computer system be designed to compete against the best
humans at a task thought to require high levels of human intelligence, and if so, what kind of
technology, algorithms, and engineering is required? While we believe the Jeopardy Challenge is an
extraordinarily demanding task that will greatly advance the field, we appreciate that this challenge
alone does not address all aspects of QA and does not by any means close the book on the QA
challenge the way that Deep Blue may have for playing chess.

The Jeopardy Challenge

Meeting the Jeopardy Challenge requires advancing and incorporating a variety of QA technologies
including parsing, question classification, question decomposition, automatic source acquisition and
evaluation, entity and relation detection, logical form generation, and knowledge representation and
reasoning.

Winning at Jeopardy requires accurately computing confidence in your answers. The questions and
content are ambiguous and noisy and none of the individual algorithms are perfect. Therefore, each
component must produce a confidence in its output, and individual component confidences must be
combined to compute the overall confidence of the final answer. The final confidence is used to



determine whether the computer system should risk choosing to answer at all. In Jeopardy parlance,
this confidence is used to determine whether the computer will “ring in” or “buzz in” for a question.
The confidence must be computed during the time the question is read and before the opportunity to
buzz in. This is roughly between 1 and 6 seconds with an average around 3 seconds.

Confidence estimation was very critical to shaping our overall approach in DeepQA. There is no
expectation that any component in the system does a perfect job — all components post features of the
computation and associated confidences, and we use a hierarchical machine-learning method to
combine all these features and decide whether or not there is enough confidence in the final answer to
attempt to buzz in and risk getting the question wrong.

In this section we elaborate on the various aspects of the Jeopardy Challenge.
The Categories

A 30-clue Jeopardy board is organized into six columns. Each column contains five clues and is
associated with a category. Categories range from broad subject headings like “history,” “science,” or
“politics” to less informative puns like “tutu much,” in which the clues are about ballet, to actual parts
of the clue, like “who appointed me to the Supreme Court?” where the clue is the name of a judge, to
“anything goes” categories like “potpourri.” Clearly some categories are essential to understanding the
clue, some are helpful but not necessary, and some may be useless, if not misleading, for a computer.

A recurring theme in our approach is the requirement to try many alternate hypotheses in varying
contexts to see which produces the most confident answers given a broad range of loosely coupled
scoring algorithms. Leveraging category information is another clear area requiring this approach.

The Questions

There are a wide variety of ways one can attempt to characterize the Jeopardy clues. For example, by
topic, by difficulty, by grammatical construction, by answer type, and so on. A type of classification
that turned out to be useful for us was based on the primary method deployed to solve the clue. The
bulk of Jeopardy clues represent what we would consider factoid questions — questions whose
answers are based on factual information about one or more individual entities. The questions
themselves present challenges in determining what exactly is being asked for and which elements of
the clue are relevant in determining the answer. Here are just a few examples (note that while the
Jeopardy! game requires that answers are delivered in the form of a question (see the Jeopardy! Quiz
Show sidebar), this transformation is trivial and for purposes of this paper we will just show the
answers themselves):

Category: General Science
Clue: When hit by electrons, a phosphor gives off electromagnetic energy in this form.
Answer: Light (or Photons)

Category: Lincoln Blogs

Clue: Secretary Chase just submitted this to me for the third time; guess what, pal. This time I'm
accepting it.

Answer: his resignation



Category: Head North
Clue: They’re the two states you could be reentering if you’re crossing Florida’s northern border.
Answer: Georgia and Alabama

Decomposition.

Some more complex clues contain multiple facts about the answer, all of which are required to arrive
at the correct response but are unlikely to occur together in one place. For example:

Category: “Rap” Sheet

Clue: This archaic term for a mischievous or annoying child can also mean a rogue or scamp.
Subclue 1: This archaic term for a mischievous or annoying child.

Subclue 2: This term can also mean a rogue or scamp.

Answer: Rapscallion

In this case, we would not expect to find both “subclues” in one sentence in our sources; rather, if we
decompose the question into these two parts and ask for answers to each one, we may find that the
answer common to both questions is the answer to the original clue.

Another class of decomposable questions is one in which a subclue is nested in the outer clue, and the
subclue can be replaced with its answer to form a new question that can more easily be answered. For
example:

Category: Diplomatic Relations

Clue: Of the four countries in the world that the United States does not have diplomatic relations
with, the one that’s farthest north.

Inner subclue: The four countries in the world that the United States does not have diplomatic
relations with (Bhutan, Cuba, Iran, North Korea).

Outer subclue: Of Bhutan, Cuba, Iran, and North Korea, the one that’s farthest north.

Answer: North Korea

Decomposable Jeopardy clues generated requirements that drove the design of DeepQA to generate
zero or more decomposition hypotheses for each question as possible interpretations.

Puzzles.

Jeopardy also has categories of questions that require special processing defined by the category itself.
Some of them recur often enough that contestants know what they mean without instruction; for
others, part of the task is to figure out what the puzzle is as the clues and answers are revealed
(categories requiring explanation by the host are not part of the challenge). Examples of well-known
puzzle categories are the Before and After category, where two subclues have answers that overlap by
(typically) one word, and the Rhyme Time category, where the two subclue answers must rhyme
with one another. Clearly these cases also require question decomposition. For example:

Category: Before and After Goes to the Movies
Clue: Film of a typical day in the life of the Beatles, which includes running from bloodthirsty zombie
fans in a Romero classic.



Subclue 2: Film of a typical day in the life of the Beatles.

Answer 1: (A Hard Day’s Night)

Subclue 2: Running from bloodthirsty zombie fans in a Romero classic.
Answer 2: (Night of the Living Dead)

Answer: A Hard Day’s Night of the Living Dead

Category: Rhyme Time

Clue: It’s where Pele stores his ball.

Subclue 1: Pele ball (soccer)

Subclue 2: where store (cabinet, drawer, locker, and so on)
Answer: soccer locker

There are many infrequent types of puzzle categories including things like converting roman
numerals, solving math word problems, sounds like, finding which word in a set has the highest
Scrabble score, homonyms and heteronyms, and so on. Puzzles constitute only about 2—3 percent of
all clues, but since they typically occur as entire categories (five at a time) they cannot be ignored for
success in the Challenge as getting them all wrong often means losing a game.

Excluded Question Types.

The Jeopardy quiz show ordinarily admits two kinds of questions that IBM and Jeopardy
Productions, Inc., agreed to exclude from the computer contest: audiovisual (A/V) questions and
Special Instructions questions. A/V questions require listening to or watching some sort of audio,
image, or video segment to determine a correct answer. For example:

Category: Picture This

(Contestants are shown a picture of a B-52 bomber)

Clue: Alphanumeric name of the fearsome machine seen here.
Answer: B-52

Special instruction questions are those that are not “self-explanatory” but rather require a verbal
explanation describing how the question should be interpreted and solved. For example:

Category: Decode the Postal Codes

Verbal instruction from host: We're going to give you a word comprising two postal abbreviations;
you have to identify the states.

Clue: Vain

Answer: Virginia and Indiana

Both present very interesting challenges from an Al perspective but were put out of scope for this
contest and evaluation.

The Domain

As a measure of the Jeopardy Challenge’s breadth of domain, we analyzed a random sample of
20,000 questions extracting the lexical answer type (LAT) when present. We define a LAT to be a
word in the clue that indicates the type of the answer, independent of assigning semantics to that



word. For example in the following clue, the LAT is the string “maneuver.”

Category: Oooh....Chess

Clue: Invented in the 1500s to speed up the game, this maneuver involves two pieces of the same
color.

7 Answer: Castling

About 12 percent of the clues do not indicate an explicit lexical answer type but may refer to the
answer with pronouns like “it,” “these,” or “this” or not refer to it at all. In these cases the type of
answer must be inferred by the context. Here’s an example:

Category: Decorating

Clue: Though it sounds “harsh,” it’s just embroidery, often in a floral pattern, done with yarn on
cotton cloth.

Answer: crewel

The distribution of LATSs has a very long tail, as shown in figure 1. We found 2500 distinct and explicit
LATs in the 20,000 question sample. The most frequent 200 explicit LATs cover less than 50 percent
of the data. Figure 1 shows the relative frequency of the LATs. It labels all the clues with no explicit
type with the label “NA.” This aspect of the challenge implies that while task-specific type systems or
manually curated data would have some impact if focused on the head of the LAT curve, it still leaves
more than half the problems unaccounted for. Our clear technical bias for both business and scientific
motivations is to create general-purpose, reusable natural language processing (NLP) and knowledge
representation and reasoning (KRR) technology that can exploit as-is natural language resources and
as-is structured knowledge rather than to curate task-specific knowledge resources.
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Figure 1. Lexical Answer Type Frequency.

The Metrics

In addition to question-answering precision, the system’s game-winning performance will depend on
speed, confidence estimation, clue selection, and betting strategy. Ultimately the outcome of the public
contest will be decided based on whether or not Watson can win one or two games against top-ranked



humans in real time. The highest amount of money earned by the end of a one- or two-game match
determines the winner. A player’s final earnings, however, often will not reflect how well the player
did during the game at the QA task. This is because a player may decide to bet big on Daily Double or
Final Jeopardy questions. There are three hidden Daily Double questions in a game that can affect
only the player lucky enough to find them, and one Final Jeopardy question at the end that all players
must gamble on. Daily Double and Final Jeopardy questions represent significant events where
players may risk all their current earnings. While potentially compelling for a public contest, a small
number of games does not represent statistically meaningful results for the system’s raw QA
performance.

While Watson is equipped with betting strategies necessary for playing full Jeopardy, from a core QA
perspective we want to measure correctness, confidence, and speed, without considering clue
selection, luck of the draw, and betting strategies. We measure correctness and confidence using
precision and percent answered. Precision measures the percentage of questions the system gets right
out of those it chooses to answer. Percent answered is the percentage of questions it chooses to answer
(correctly or incorrectly). The system chooses which questions to answer based on an estimated
confidence score: for a given threshold, the system will answer all questions with confidence scores
above that threshold. The threshold controls the trade-off between precision and percent answered,
assuming reasonable confidence estimation. For higher thresholds the system will be more
conservative, answering fewer questions with higher precision. For lower thresholds, it will be more
aggressive, answering more questions with lower precision. Accuracy refers to the precision if all
questions are answered.

Figure 2 shows a plot of precision versus percent attempted curves for two theoretical systems. It is
obtained by evaluating the two systems over a range of confidence thresholds. Both systems have 40
percent accuracy, meaning they get 40 percent of all questions correct. They differ only in their
confidence estimation. The upper line represents an ideal system with perfect confidence estimation.
Such a system would identify exactly which questions it gets right and wrong and give higher
confidence to those it got right. As can be seen in the graph, if such a system were to answer the 50
percent of questions it had highest confidence for, it would get 80 percent of those correct. We refer to
this level of performance as 80 percent precision at 50 percent answered. The lower line represents a
system without meaningful confidence estimation. Since it cannot distinguish between which
questions it is more or less likely to get correct, its precision is constant for all percent attempted.
Developing more accurate confidence estimation means a system can deliver far higher precision even
with the same overall accuracy.
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Figure 2. Precision Versus Percentage Attempted.
Perfect confidence estimation (upper line) and no confidence estimation (lower line).

The Competition: Human Champion Performance

A compelling and scientifically appealing aspect of the Jeopardy Challenge is the human reference
point. Figure 3 contains a graph that illustrates expert human performance on Jeopardy 1t is based
on our analysis of nearly 2000 historical Jeopardy games. Each point on the graph represents the

performance of the winner in one Jeopardy game.? As in figure 2, the x-axis of the graph, labeled “%
Answered,” represents the percentage of questions the winner answered, and the y-axis of the graph,
labeled “Precision,” represents the percentage of those questions the winner answered correctly.
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Figure 3. Champion Human Performance at Jeopardy.

In contrast to the system evaluation shown in figure 2, which can display a curve over a range of
confidence thresholds, the human performance shows only a single point per game based on the
observed precision and percent answered the winner demonstrated in the game. A further distinction
is that in these historical games the human contestants did not have the liberty to answer all questions
they wished. Rather the percent answered consists of those questions for which the winner was
confident and fast enough to beat the competition to the buzz. The system performance graphs shown
in this paper are focused on evaluating QA performance, and so do not take into account competition
for the buzz. Human performance helps to position our system’s performance, but obviously, in a
Jeopardy game, performance will be affected by competition for the buzz and this will depend in large
part on how quickly a player can compute an accurate confidence and how the player manages risk.

The center of what we call the “Winners Cloud” (the set of light gray dots in the graph in figures 3 and
4) reveals that Jeopardy champions are confident and fast enough to acquire on average between 40
percent and 50 percent of all the questions from their competitors and to perform with between 85
percent and 95 percent precision.
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Figure 4. Baseline Performance.

The darker dots on the graph represent Ken Jennings’s games. Ken Jennings had an unequaled
winning streak in 2004, in which he won 74 games in a row. Based on our analysis of those games,
he acquired on average 62 percent of the questions and answered with 92 percent precision. Human
performance at this task sets a very high bar for precision, confidence, speed, and breadth.

Baseline Performance

Our metrics and baselines are intended to give us confidence that new methods and algorithms are
improving the system or to inform us when they are not so that we can adjust research priorities.

Our most obvious baseline is the QA system called Practical Intelligent Question Answering
Technology (PIQUANT) (Prager, Chu-Carroll, and Czuba 2004), which had been under development
at IBM Research by a four-person team for 6 years prior to taking on the Jeopardy Challenge. At the
time it was among the top three to five Text Retrieval Conference (TREC) QA systems. Developed in

part under the U.S. government AQUAINT program3 and in collaboration with external teams and
universities, PIQUANT was a classic QA pipeline with state-of-the-art techniques aimed largely at the
TREC QA evaluation (Voorhees and Dang 2005). PIQUANT performed in the 33 percent accuracy
range in TREC evaluations. While the TREC QA evaluation allowed the use of the web, PIQUANT
focused on question answering using local resources. A requirement of the Jeopardy Challenge is that
the system be self-contained and does not link to live web search.

The requirements of the TREC QA evaluation were different than for the Jeopardy challenge. Most
notably, TREC participants were given a relatively small corpus (1M documents) from which answers
to questions must be justified; TREC questions were in a much simpler form compared to Jeopardy
questions, and the confidences associated with answers were not a primary metric. Furthermore, the
systems are allowed to access the web and had a week to produce results for 500 questions. The reader

can find details in the TREC proceedings* and numerous follow-on publications.

An initial 4-week effort was made to adapt PIQUANT to the Jeopardy Challenge. The experiment



focused on precision and confidence. It ignored issues of answering speed and aspects of the game like
betting and clue values.

The questions used were 500 randomly sampled Jeopardy clues from episodes in the past 15 years.
The corpus that was used contained, but did not necessarily justify, answers to more than 9o percent
of the questions. The result of the PIQUANT baseline experiment is illustrated in figure 4. As shown,
on the 5 percent of the clues that PIQUANT was most confident in (left end of the curve), it delivered
47 percent precision, and over all the clues in the set (right end of the curve), its precision was 13
percent. Clearly the precision and confidence estimation are far below the requirements of the
Jeopardy Challenge.

A similar baseline experiment was performed in collaboration with Carnegie Mellon University

(CMU) using OpenEphyra,® an open-source QA framework developed primarily at CMU. The
framework is based on the Ephyra system, which was designed for answering TREC questions. In our
experiments on TREC 2002 data, OpenEphyra answered 45 percent of the questions correctly using a
live web search.

We spent minimal effort adapting OpenEphyra, but like PIQUANT, its performance on Jeopardy
clues was below 15 percent accuracy. OpenEphyra did not produce reliable confidence estimates and
thus could not effectively choose to answer questions with higher confidence. Clearly a larger
investment in tuning and adapting these baseline systems to Jeopardy would improve their
performance; however, we limited this investment since we did not want the baseline systems to
become significant efforts.

The PIQUANT and OpenEphyra baselines demonstrate the performance of state-of-the-art QA
systems on the Jeopardy task. In figure 5 we show two other baselines that demonstrate the
performance of two complementary approaches on this task. The light gray line shows the
performance of a system based purely on text search, using terms in the question as queries and
search engine scores as confidences for candidate answers generated from retrieved document titles.
The black line shows the performance of a system based on structured data, which attempts to look
the answer up in a database by simply finding the named entities in the database related to the named
entities in the clue. These two approaches were adapted to the Jeopardy task, including identifying
and integrating relevant content.



1009 ¢

9%

0%

GG 1

509 ¢

Precision

40%

3.;_.-:.. 4

.’{J".. i

0% 109  20%  30%  40%  50%  60% 0% BO%W 90%  100%
% Answered

Figure 5. Text Search Versus Knowledge Base Search.

The results form an interesting comparison. The search-based system has better performance at 100
percent answered, suggesting that the natural language content and the shallow text search
techniques delivered better coverage. However, the flatness of the curve indicates the lack of accurate

confidence estimation.® The structured approach had better informed confidence when it was able to
decipher the entities in the question and found the right matches in its structured knowledge bases,
but its coverage quickly drops off when asked to answer more questions. To be a high-performing
question-answering system, DeepQA must demonstrate both these properties to achieve high
precision, high recall, and an accurate confidence estimation.

The DeepQA Approach

Early on in the project, attempts to adapt PIQUANT (Chu-Carroll et al. 2003) failed to produce
promising results. We devoted many months of effort to encoding algorithms from the literature. Our
investigations ran the gamut from deep logical form analysis to shallow machine-translation-based
approaches. We integrated them into the standard QA pipeline that went from question analysis and
answer type determination to search and then answer selection. It was difficult, however, to find
examples of how published research results could be taken out of their original context and effectively
replicated and integrated into different end-to-end systems to produce comparable results. Our efforts
failed to have significant impact on Jeopardy or even on prior baseline studies using TREC data.

We ended up overhauling nearly everything we did, including our basic technical approach, the
underlying architecture, metrics, evaluation protocols, engineering practices, and even how we
worked together as a team. We also, in cooperation with CMU, began the Open Advancement of
Question Answering (OAQA) initiative. OAQA is intended to directly engage researchers in the
community to help replicate and reuse research results and to identify how to more rapidly advance
the state of the art in QA (Ferrucci et al 2009).

As our results dramatically improved, we observed that system-level advances allowing rapid
integration and evaluation of new ideas and new components against end-to-end metrics were



essential to our progress. This was echoed at the OAQA workshop for experts with decades of
investment in QA, hosted by IBM in early 2008. Among the workshop conclusions was that QA
would benefit from the collaborative evolution of a single extensible architecture that would allow
component results to be consistently evaluated in a common technical context against a growing
variety of what were called “Challenge Problems.” Different challenge problems were identified to
address various dimensions of the general QA problem. Jeopardy was described as one addressing
dimensions including high precision, accurate confidence determination, complex language, breadth
of domain, and speed.

The system we have built and are continuing to develop, called DeepQA, is a massively parallel
probabilistic evidence-based architecture. For the Jeopardy Challenge, we use more than 100 different
techniques for analyzing natural language, identifying sources, finding and generating hypotheses,
finding and scoring evidence, and merging and ranking hypotheses. What is far more important than
any particular technique we use is how we combine them in DeepQA such that overlapping
approaches can bring their strengths to bear and contribute to improvements in accuracy, confidence,
or speed.

DeepQA is an architecture with an accompanying methodology, but it is not specific to the Jeopardy
Challenge. We have successfully applied DeepQA to both the Jeopardy and TREC QA task. We have
begun adapting it to different business applications and additional exploratory challenge problems
including medicine, enterprise search, and gaming.

The overarching principles in DeepQA are massive parallelism, many experts, pervasive confidence
estimation, and integration of shallow and deep knowledge.

Massive parallelism: Exploit massive parallelism in the consideration of multiple interpretations and
hypotheses.

Many experts: Facilitate the integration, application, and contextual evaluation of a wide range of
loosely coupled probabilistic question and content analytics.

Pervasive confidence estimation: No component commits to an answer; all components produce
features and associated confidences, scoring different question and content interpretations. An
underlying confidence-processing substrate learns how to stack and combine the scores.

Integrate shallow and deep knowledge: Balance the use of strict semantics and shallow semantics,
leveraging many loosely formed ontologies.

Figure 6 illustrates the DeepQA architecture at a very high level. The remaining parts of this section
provide a bit more detail about the various architectural roles.
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Figure 6. DeepQA High-Level Architecture.

Content Acquisition

The first step in any application of DeepQA to solve a QA problem is content acquisition, or identifying
and gathering the content to use for the answer and evidence sources shown in figure 6.

Content acquisition is a combination of manual and automatic steps. The first step is to analyze
example questions from the problem space to produce a description of the kinds of questions that
must be answered and a characterization of the application domain. Analyzing example questions is
primarily a manual task, while domain analysis may be informed by automatic or statistical analyses,
such as the LAT analysis shown in figure 1. Given the kinds of questions and broad domain of the
Jeopardy Challenge, the sources for Watson include a wide range of encyclopedias, dictionaries,
thesauri, newswire articles, literary works, and so on.

Given a reasonable baseline corpus, DeepQA then applies an automatic corpus expansion process. The
process involves four high-level steps: (1) identify seed documents and retrieve related documents
from the web; (2) extract self-contained text nuggets from the related web documents; (3) score the
nuggets based on whether they are informative with respect to the original seed document; and (4)
merge the most informative nuggets into the expanded corpus. The live system itself uses this
expanded corpus and does not have access to the web during play.

In addition to the content for the answer and evidence sources, DeepQA leverages other kinds of
semistructured and structured content. Another step in the content-acquisition process is to identify

and collect these resources, which include databases, taxonomies, and ontologies, such as dbPedia,”
WordNet (Miller 1995), and the Yago8 ontology.

Question Analysis

The first step in the run-time question-answering process is question analysis. During question
analysis the system attempts to understand what the question is asking and performs the initial
analyses that determine how the question will be processed by the rest of the system. The DeepQA
approach encourages a mixture of experts at this stage, and in the Watson system we produce shallow



parses, deep parses (McCord 1990), logical forms, semantic role labels, coreference, relations, named
entities, and so on, as well as specific kinds of analysis for question answering. Most of these
technologies are well understood and are not discussed here, but a few require some elaboration.

Question Classification.

Question classification is the task of identifying question types or parts of questions that require special
processing. This can include anything from single words with potentially double meanings to entire
clauses that have certain syntactic, semantic, or rhetorical functionality that may inform downstream
components with their analysis. Question classification may identify a question as a puzzle question, a
math question, a definition question, and so on. It will identify puns, constraints, definition
components, or entire subclues within questions.

Focus and LAT Detection.

As discussed earlier, a lexical answer type is a word or noun phrase in the question that specifies the
type of the answer without any attempt to understand its semantics. Determining whether or not a
candidate answer can be considered an instance of the LAT is an important kind of scoring and a
common source of critical errors. An advantage to the DeepQA approach is to exploit many
independently developed answer-typing algorithms. However, many of these algorithms are
dependent on their own type systems. We found the best way to integrate preexisting components is
not to force them into a single, common type system, but to have them map from the LAT to their
own internal types.

The focus of the question is the part of the question that, if replaced by the answer, makes the
question a stand-alone statement. Looking back at some of the examples shown previously, the focus
of “When hit by electrons, a phosphor gives off electromagnetic energy in this form” is “this form”; the
focus of “Secretary Chase just submitted this to me for the third time; guess what, pal. This time I'm
accepting it” is the first “this”; and the focus of “This title character was the crusty and tough city
editor of the Los Angeles Tribune” is “This title character.” The focus often (but not always) contains
useful information about the answer, is often the subject or object of a relation in the clue, and can
turn a question into a factual statement when replaced with a candidate, which is a useful way to
gather evidence about a candidate.

Relation Detection.

Most questions contain relations, whether they are syntactic subject-verb-object predicates or
semantic relationships between entities. For example, in the question, “They’re the two states you
could be reentering if you’re crossing Florida’s northern border,” we can detect the relation
borders(Florida,?x,north).

Watson uses relation detection throughout the QA process, from focus and LAT determination, to
passage and answer scoring. Watson can also use detected relations to query a triple store and directly
generate candidate answers. Due to the breadth of relations in the Jeopardy domain and the variety
of ways in which they are expressed, however, Watson’s current ability to effectively use curated
databases to simply “look up” the answers is limited to fewer than 2 percent of the clues.



Watson’s use of existing databases depends on the ability to analyze the question and detect the
relations covered by the databases. In Jeopardy the broad domain makes it difficult to identify the
most lucrative relations to detect. In 20,000 Jeopardy questions, for example, we found the

distribution of Freebase? relations to be extremely flat (figure 7). Roughly speaking, even achieving
high recall on detecting the most frequent relations in the domain can at best help in about 25 percent
of the questions, and the benefit of relation detection drops off fast with the less frequent relations.
Broad-domain relation detection remains a major open area of research.
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Figure 7. Approximate Distribution of the 50 Most Frequently
Occurring Freebase Relations in 20,000 Randomly Selected Jeopardy Clues.

Decomposition.

As discussed above, an important requirement driven by analysis of Jeopardy clues was the ability to
handle questions that are better answered through decomposition. DeepQA uses rule-based deep
parsing and statistical classification methods both to recognize whether questions should be
decomposed and to determine how best to break them up into subquestions. The operating hypothesis
is that the correct question interpretation and derived answer(s) will score higher after all the collected
evidence and all the relevant algorithms have been considered. Even if the question did not need to be
decomposed to determine an answer, this method can help improve the system’s overall answer
confidence.

DeepQA solves parallel decomposable questions through application of the end-to-end QA system on
each subclue and synthesizes the final answers by a customizable answer combination component.
These processing paths are shown in medium gray in figure 6. DeepQA also supports nested
decomposable questions through recursive application of the end-to-end QA system to the inner
subclue and then to the outer subclue. The customizable synthesis components allow specialized
synthesis algorithms to be easily plugged into a common framework.

Hypothesis Generation



Hypothesis generation takes the results of question analysis and produces candidate answers by
searching the system’s sources and extracting answer-sized snippets from the search results. Each
candidate answer plugged back into the question is considered a hypothesis, which the system has to
prove correct with some degree of confidence.

We refer to search performed in hypothesis generation as “primary search” to distinguish it from
search performed during evidence gathering (described below). As with all aspects of DeepQA, we use
a mixture of different approaches for primary search and candidate generation in the Watson system.

Primary Search.

In primary search the goal is to find as much potentially answer-bearing content as possible based on
the results of question analysis — the focus is squarely on recall with the expectation that the host of
deeper content analytics will extract answer candidates and score this content plus whatever evidence
can be found in support or refutation of candidates to drive up the precision. Over the course of the
project we continued to conduct empirical studies designed to balance speed, recall, and precision.
These studies allowed us to regularly tune the system to find the number of search results and
candidates that produced the best balance of accuracy and computational resources. The operative
goal for primary search eventually stabilized at about 85 percent binary recall for the top 250
candidates; that is, the system generates the correct answer as a candidate answer for 85 percent of
the questions somewhere within the top 250 ranked candidates.

A variety of search techniques are used, including the use of multiple text search engines with
different underlying approaches (for example, Indri and Lucene), document search as well as passage
search, knowledge base search using SPARQL on triple stores, the generation of multiple search
queries for a single question, and backfilling hit lists to satisfy key constraints identified in the
question.

Triple store queries in primary search are based on named entities in the clue; for example, find all
database entities related to the clue entities, or based on more focused queries in the cases that a
semantic relation was detected. For a small number of LATs we identified as “closed LATs,” the
candidate answer can be generated from a fixed list in some store of known instances of the LAT, such
as “U.S. President” or “Country.”

Candidate Answer Generation.

The search results feed into candidate generation, where techniques appropriate to the kind of search
results are applied to generate candidate answers. For document search results from “title-oriented”
resources, the title is extracted as a candidate answer. The system may generate a number of
candidate answer variants from the same title based on substring analysis or link analysis (if the
underlying source contains hyperlinks). Passage search results require more detailed analysis of the
passage text to identify candidate answers. For example, named entity detection may be used to
extract candidate answers from the passage. Some sources, such as a triple store and reverse
dictionary lookup, produce candidate answers directly as their search result.

If the correct answer(s) are not generated at this stage as a candidate, the system has no hope of



answering the question. This step therefore significantly favors recall over precision, with the
expectation that the rest of the processing pipeline will tease out the correct answer, even if the set of
candidates is quite large. One of the goals of the system design, therefore, is to tolerate noise in the
early stages of the pipeline and drive up precision downstream.

Watson generates several hundred candidate answers at this stage.
Soft Filtering

A key step in managing the resource versus precision trade-off is the application of lightweight (less
resource intensive) scoring algorithms to a larger set of initial candidates to prune them down to a
smaller set of candidates before the more intensive scoring components see them. For example, a
lightweight scorer may compute the likelihood of a candidate answer being an instance of the LAT.
We call this step soft filtering.

The system combines these lightweight analysis scores into a soft filtering score. Candidate answers
that pass the soft filtering threshold proceed to hypothesis and evidence scoring, while those
candidates that do not pass the filtering threshold are routed directly to the final merging stage. The
soft filtering scoring model and filtering threshold are determined based on machine learning over
training data.

Watson currently lets roughly 100 candidates pass the soft filter, but this a parameterizable function.
Hypothesis and Evidence Scoring

Candidate answers that pass the soft filtering threshold undergo a rigorous evaluation process that
involves gathering additional supporting evidence for each candidate answer, or hypothesis, and
applying a wide variety of deep scoring analytics to evaluate the supporting evidence.

Evidence Retrieval.

To better evaluate each candidate answer that passes the soft filter, the system gathers additional
supporting evidence. The architecture supports the integration of a variety of evidence-gathering
techniques. One particularly effective technique is passage search where the candidate answer is
added as a required term to the primary search query derived from the question. This will retrieve
passages that contain the candidate answer used in the context of the original question terms.
Supporting evidence may also come from other sources like triple stores. The retrieved supporting
evidence is routed to the deep evidence scoring components, which evaluate the candidate answer in
the context of the supporting evidence.

Scoring.

The scoring step is where the bulk of the deep content analysis is performed. Scoring algorithms
determine the degree of certainty that retrieved evidence supports the candidate answers. The DeepQA
framework supports and encourages the inclusion of many different components, or scorers, that
consider different dimensions of the evidence and produce a score that corresponds to how well
evidence supports a candidate answer for a given question.



DeepQA provides a common format for the scorers to register hypotheses (for example candidate
answers) and confidence scores, while imposing few restrictions on the semantics of the scores
themselves; this enables DeepQA developers to rapidly deploy, mix, and tune components to support
each other. For example, Watson employs more than 50 scoring components that produce scores
ranging from formal probabilities to counts to categorical features, based on evidence from different
types of sources including unstructured text, semistructured text, and triple stores. These scorers
consider things like the degree of match between a passage’s predicate-argument structure and the
question, passage source reliability, geospatial location, temporal relationships, taxonomic
classification, the lexical and semantic relations the candidate is known to participate in, the
candidate’s correlation with question terms, its popularity (or obscurity), its aliases, and so on.

Consider the question, “He was presidentially pardoned on September 8, 1974”; the correct answer,
“Nixon,” is one of the generated candidates. One of the retrieved passages is “Ford pardoned Nixon on
Sept. 8, 1974.” One passage scorer counts the number of IDF-weighted terms in common between the
question and the passage. Another passage scorer based on the Smith-Waterman sequence-matching
algorithm (Smith and Waterman 1981), measures the lengths of the longest similar subsequences
between the question and passage (for example “on Sept. 8, 1974”). A third type of passage scoring
measures the alignment of the logical forms of the question and passage. A logical form is a graphical
abstraction of text in which nodes are terms in the text and edges represent either grammatical
relationships (for example, Hermjakob, Hovy, and Lin [2000]; Moldovan et al. [2003]), deep
semantic relationships (for example, Lenat [1995], Paritosh and Forbus [2005]), or both . The logical
form alignment identifies Nixon as the object of the pardoning in the passage, and that the question is
asking for the object of a pardoning. Logical form alignment gives “Nixon” a good score given this
evidence. In contrast, a candidate answer like “Ford” would receive near identical scores to “Nixon”
for term matching and passage alignment with this passage, but would receive a lower logical form
alignment score.

Another type of scorer uses knowledge in triple stores, simple reasoning such as subsumption and
disjointness in type taxonomies, geospatial, and temporal reasoning. Geospatial reasoning is used in
Watson to detect the presence or absence of spatial relations such as directionality, borders, and
containment between geoentities. For example, if a question asks for an Asian city, then spatial
containment provides evidence that Beijing is a suitable candidate, whereas Sydney is not. Similarly,
geocoordinate information associated with entities is used to compute relative directionality (for
example, California is SW of Montana; GW Bridge is N of Lincoln Tunnel, and so on).

Temporal reasoning is used in Watson to detect inconsistencies between dates in the clue and those
associated with a candidate answer. For example, the two most likely candidate answers generated by
the system for the clue, “In 1594 he took a job as a tax collector in Andalusia,” are “Thoreau” and
“Cervantes.” In this case, temporal reasoning is used to rule out Thoreau as he was not alive in 1594,
having been born in 1817, whereas Cervantes, the correct answer, was born in 1547 and died in 1616.

Each of the scorers implemented in Watson, how they work, how they interact, and their independent
impact on Watson’s performance deserves its own research paper. We cannot do this work justice
here. It is important to note, however, at this point no one algorithm dominates. In fact we believe
DeepQA’s facility for absorbing these algorithms, and the tools we have created for exploring their
interactions and effects, will represent an important and lasting contribution of this work.



To help developers and users get a sense of how Watson uses evidence to decide between competing
candidate answers, scores are combined into an overall evidence profile. The evidence profile groups
individual features into aggregate evidence dimensions that provide a more intuitive view of the
feature group. Aggregate evidence dimensions might include, for example, Taxonomic, Geospatial
(location), Temporal, Source Reliability, Gender, Name Consistency, Relational, Passage Support,
Theory Consistency, and so on. Each aggregate dimension is a combination of related feature scores
produced by the specific algorithms that fired on the gathered evidence.

Consider the following question: Chile shares its longest land border with this country. In figure 8 we
see a comparison of the evidence profiles for two candidate answers produced by the system for this
question: Argentina and Bolivia. Simple search engine scores favor Bolivia as an answer, due to a
popular border dispute that was frequently reported in the news. Watson prefers Argentina (the
correct answer) over Bolivia, and the evidence profile shows why. Although Bolivia does have strong
popularity scores, Argentina has strong support in the geospatial, passage support (for example,
alignment and logical form graph matching of various text passages), and source reliability
dimensions.
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Figure 8. Evidence Profiles for Two Candidate Answers.
Dimensions are on the x-axis and relative strength is on the y-axis.

Final Merging and Ranking

It is one thing to return documents that contain key words from the question. It is quite another,
however, to analyze the question and the content enough to identify the precise answer and yet
another to determine an accurate enough confidence in its correctness to bet on it. Winning at
Jeopardy requires exactly that ability.

The goal of final ranking and merging is to evaluate the hundreds of hypotheses based on potentially
hundreds of thousands of scores to identify the single best-supported hypothesis given the evidence



and to estimate its confidence — the likelihood it is correct.
Answer Merging

Multiple candidate answers for a question may be equivalent despite very different surface forms. This
is particularly confusing to ranking techniques that make use of relative differences between
candidates. Without merging, ranking algorithms would be comparing multiple surface forms that
represent the same answer and trying to discriminate among them. While one line of research has
been proposed based on boosting confidence in similar candidates (Ko, Nyberg, and Luo 2007), our
approach is inspired by the observation that different surface forms are often disparately supported in
the evidence and result in radically different, though potentially complementary, scores. This
motivates an approach that merges answer scores before ranking and confidence estimation. Using
an ensemble of matching, normalization, and coreference resolution algorithms, Watson identifies
equivalent and related hypotheses (for example, Abraham Lincoln and Honest Abe) and then enables
custom merging per feature to combine scores.

Ranking and Confidence Estimation

After merging, the system must rank the hypotheses and estimate confidence based on their merged
scores. We adopted a machine-learning approach that requires running the system over a set of
training questions with known answers and training a model based on the scores. One could assume a
very flat model and apply existing ranking algorithms (for example, Herbrich, Graepel, and
Obermayer [2000]; Joachims [2002]) directly to these score profiles and use the ranking score for
confidence. For more intelligent ranking, however, ranking and confidence estimation may be
separated into two phases. In both phases sets of scores may be grouped according to their domain
(for example type matching, passage scoring, and so on.) and intermediate models trained using
ground truths and methods specific for that task. Using these intermediate models, the system
produces an ensemble of intermediate scores. Motivated by hierarchical techniques such as mixture of
experts (Jacobs et al. 1991) and stacked generalization (Wolpert 1992), a metalearner is trained over
this ensemble. This approach allows for iteratively enhancing the system with more sophisticated and
deeper hierarchical models while retaining flexibility for robustness and experimentation as scorers
are modified and added to the system.

Watson’s metalearner uses multiple trained models to handle different question classes as, for
instance, certain scores that may be crucial to identifying the correct answer for a factoid question
may not be as useful on puzzle questions.

Finally, an important consideration in dealing with NLP-based scorers is that the features they
produce may be quite sparse, and so accurate confidence estimation requires the application of
confidence-weighted learning techniques. (Dredze, Crammer, and Pereira 2008).

Speed and Scaleout

DeepQA is developed using Apache UIMA,'° a framework implementation of the Unstructured
Information Management Architecture (Ferrucci and Lally 2004). UIMA was designed to support
interoperability and scaleout of text and multimodal analysis applications. All of the components in



DeepQA are implemented as UIMA annotators. These are software components that analyze text and
produce annotations or assertions about the text. Watson has evolved over time and the number of
components in the system has reached into the hundreds. UIMA facilitated rapid component
integration, testing, and evaluation.

Early implementations of Watson ran on a single processor where it took 2 hours to answer a single
question. The DeepQA computation is embarrassing parallel, however. UIMA-AS, part of Apache
UIMA, enables the scaleout of UIMA applications using asynchronous messaging. We used UIMA-AS
to scale Watson out over 2500 compute cores. UIMA-AS handles all of the communication,
messaging, and queue management necessary using the open JMS standard. The UIMA-AS
deployment of Watson enabled competitive run-time latencies in the 3—5 second range.

To preprocess the corpus and create fast run-time indices we used Hadoop.'* UIMA annotators were
easily deployed as mappers in the Hadoop map-reduce framework. Hadoop distributes the content
over the cluster to afford high CPU utilization and provides convenient tools for deploying, managing,
and monitoring the corpus analysis process.

Strategy

Jeopardy demands strategic game play to match wits against the best human players. In a typical
Jeopardy game, Watson faces the following strategic decisions: deciding whether to buzz in and
attempt to answer a question, selecting squares from the board, and wagering on Daily Doubles and
Final Jeopardy.

The workhorse of strategic decisions is the buzz-in decision, which is required for every non—Daily
Double clue on the board. This is where DeepQA’s ability to accurately estimate its confidence in its
answer is critical, and Watson considers this confidence along with other game-state factors in
making the final determination whether to buzz. Another strategic decision, Final Jeopardy wagering,
generally receives the most attention and analysis from those interested in game strategy, and there
exists a growing catalogue of heuristics such as “Clavin’s Rule” or the “Two-Thirds Rule” (Dupee
1998) as well as identification of those critical score boundaries at which particular strategies may be
used (by no means does this make it easy or rote; despite this attention, we have found evidence that
contestants still occasionally make irrational Final Jeopardy bets). Daily Double betting turns out to
be less studied but just as challenging since the player must consider opponents’ scores and predict the
likelihood of getting the question correct just as in Final Jeopardy. After a Daily Double, however, the
game is not over, so evaluation of a wager requires forecasting the effect it will have on the distant,
final outcome of the game.

These challenges drove the construction of statistical models of players and games, game-theoretic
analyses of particular game scenarios and strategies, and the development and application of
reinforcement-learning techniques for Watson to learn its strategy for playing Jeopardy. Fortunately,
moderate samounts of historical data are available to serve as training data for learning techniques.
Even so, it requires extremely careful modeling and game-theoretic evaluation as the game of
Jeopardy has incomplete information and uncertainty to model, critical score boundaries to
recognize, and savvy, competitive players to account for. It is a game where one faulty strategic
choice can lose the entire match.



Status and Results

After approximately 3 years of effort by a core algorithmic team composed of 20 researchers and
software engineers with a range of backgrounds in natural language processing, information retrieval,
machine learning, computational linguistics, and knowledge representation and reasoning, we have
driven the performance of DeepQA to operate within the winner’s cloud on the Jeopardy task, as
shown in figure 9. Watson’s results illustrated in this figure were measured over blind test sets
containing more than 2000 Jeopardy questions.
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Figure 9. Watson’s Precision and Confidence Progress as of the Fourth Quarter 2009.

After many nonstarters, by the fourth quarter of 2007 we finally adopted the DeepQA architecture. At
that point we had all moved out of our private offices and into a “war room” setting to dramatically
facilitate team communication and tight collaboration. We instituted a host of disciplined engineering
and experimental methodologies supported by metrics and tools to ensure we were investing in
techniques that promised significant impact on end-to-end metrics. Since then, modulo some early
jumps in performance, the progress has been incremental but steady. It is slowing in recent months as
the remaining challenges prove either very difficult or highly specialized and covering small
phenomena in the data.

By the end of 2008 we were performing reasonably well — about 70 percent precision at 70 percent
attempted over the 12,000 question blind data, but it was taking 2 hours to answer a single question
on a single CPU. We brought on a team specializing in UIMA and UIMA-AS to scale up DeepQA on a
massively parallel high-performance computing platform. We are currently answering more than 85
percent of the questions in 5 seconds or less — fast enough to provide competitive performance, and
with continued algorithmic development are performing with about 85 percent precision at 70 percent
attempted.

We have more to do in order to improve precision, confidence, and speed enough to compete with



grand champions. We are finding great results in leveraging the DeepQA architecture capability to
quickly admit and evaluate the impact of new algorithms as we engage more university partnerships
to help meet the challenge.

An Early Adaptation Experiment

Another challenge for DeepQA has been to demonstrate if and how it can adapt to other QA tasks. In
mid-2008, after we had populated the basic architecture with a host of components for searching,
evidence retrieval, scoring, final merging, and ranking for the Jeopardy task, IBM collaborated with
CMU to try to adapt DeepQA to the TREC QA problem by plugging in only select domain-specific
components previously tuned to the TREC task. In particular, we added question-analysis
components from PIQUANT and OpenEphyra that identify answer types for a question, and
candidate answer-generation components that identify instances of those answer types in the text.
The DeepQA framework utilized both sets of components despite their different type systems — no
ontology integration was performed. The identification and integration of these domain specific
components into DeepQA took just a few weeks.

The extended DeepQA system was applied to TREC questions. Some of DeepQA’s answer and evidence
scorers are more relevant in the TREC domain than in the Jeopardy domain and others are less
relevant. We addressed this aspect of adaptation for DeepQA’s final merging and ranking by training
an answer-ranking model using TREC questions; thus the extent to which each score affected the
answer ranking and confidence was automatically customized for TREC.

Figure 10 shows the results of the adaptation experiment. Both the 2005 PIQUANT and 2007
OpenEphyra systems had less than 50 percent accuracy on the TREC questions and less than 15
percent accuracy on the Jeopardy clues. The DeepQA system at the time had accuracy above 50
percent on Jeopardy. Without adaptation DeepQA’s accuracy on TREC questions was about 35
percent. After adaptation, DeepQA’s accuracy on TREC exceeded 60 percent. We repeated the
adaptation experiment in 2010, and in addition to the improvements to DeepQA since 2008, the
adaptation included a transfer learning step for TREC questions from a model trained on Jeopardy
questions. DeepQA’s performance on TREC data was 51 percent accuracy prior to adaptation and 67
percent after adaptation, nearly level with its performance on blind Jeopardy data.
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Figure 10. Accuracy on Jeopardy! and TREC.

The result performed significantly better than the original complete systems on the task for which
they were designed. While just one adaptation experiment, this is exactly the sort of behavior we think
an extensible QA system should exhibit. It should quickly absorb domain- or task-specific components
and get better on that target task without degradation in performance in the general case or on prior
tasks.

Summary

The Jeopardy Challenge helped us address requirements that led to the design of the DeepQA
architecture and the implementation of Watson. After 3 years of intense research and development by
a core team of about 20 researcherss, Watson is performing at human expert levels in terms of
precision, confidence, and speed at the Jeopardy quiz show.

Our results strongly suggest that DeepQA is an effective and extensible architecture that may be used
as a foundation for combining, deploying, evaluating, and advancing a wide range of algorithmic
techniques to rapidly advance the field of QA.

The architecture and methodology developed as part of this project has highlighted the need to take a
systems-level approach to research in QA, and we believe this applies to research in the broader field
of AI. We have developed many different algorithms for addressing different kinds of problems in QA
and plan to publish many of them in more detail in the future. However, no one algorithm solves
challenge problems like this. End-to-end systems tend to involve many complex and often overlapping
interactions. A system design and methodology that facilitated the efficient integration and ablation
studies of many probabilistic components was essential for our success to date. The impact of any one
algorithm on end-to-end performance changed over time as other techniques were added and had
overlapping effects. Our commitment to regularly evaluate the effects of specific techniques on end-
to-end performance, and to let that shape our research investment, was necessary for our rapid



progress.

Rapid experimentation was another critical ingredient to our success. The team conducted more than
5500 independent experiments in 3 years — each averaging about 2000 CPU hours and generating
more than 10 GB of error-analysis data. Without DeepQA’s massively parallel architecture and a
dedicated high-performance computing infrastructure, we would not have been able to perform these
experiments, and likely would not have even conceived of many of them.

Tuned for the Jeopardy Challenge, Watson has begun to compete against former Jeopardy players in
a series of “sparring” games. It is holding its own, winning 64 percent of the games, but has to be
improved and sped up to compete favorably against the very best.

We have leveraged our collaboration with CMU and with our other university partnerships in getting
this far and hope to continue our collaborative work to drive Watson to its final goal, and help openly
advance QA research.
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Notes

1. Watson is named after IBM’s founder, Thomas J. Watson.

2. Random jitter has been added to help visualize the distribution of points.
3. www-nlpir.nist.gov/projects/aquaint.

4. trec.nist.gov/proceedings/proceedings.html.

5. sourceforge.net/projects/openephyra/.

6. The dip at the left end of the light gray curve is due to the disproportionately high score the search



engine assigns to short queries, which typically are not sufficiently discriminative to retrieve the
correct answer in top position.

7. dbpedia.org.

8. www.mpi-inf.mpg.de/yago-naga/yago.
9. freebase.com.

10. incubator.apache.org/uima.

11. hadoop.apache.org.
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