
Propagation: A Revolutionary Model for Computation

Seedling Proposal
Gerald Jay Sussman, MIT CSAIL & EECS

Vision

Instructors in introductory programming subjects often draw attention to similarities between
programming and recipe writing. Too bad. It helps perpetuate a way of thinking in place since
Grace Hopper invented COBOL. True, we have introduced abstraction, the model-view-controller
idea, and integrated development environments, but those are all incremental, not revolutionary.

Absent a revolution, we continue write programs the way we always have, and those programs
are narrow and brittle. Other sorts of engineered and natural systems, in contrast, are often robust
and adaptable. The Internet, for example, has adapted from a small system to one of global scale.
Our cities evolve organically, to accommodate new business models, life styles, and means of
transportation and communication. Indeed, from observation of biological systems we see that it
is possible to build systems that can adapt to changes in the environment, both individually and
as an evolutionary ensemble.

Why not shift the paradigm so that we can design and build computational systems with
ideas ready to be borrowed from engineering practice? In particular, we believe the time has
come to focus on propagation, a computational model built on the engineering idea that the basic
computational elements are autonomous machines interconnected by shared cells through which
they communicate, as in the following:

good−enuf?
x

g

Heron−step

sqrt−iter

answer

sqrt−iter



2

Each machine in a propagation system continuously examines the cells it is interested in, and
adds information to some based on deductions it can make from information from the others. This
model makes it easy to smoothly combine expression-oriented and constraint-based programming.

Traditional computational models allow the value stored in a "place" to come from only one
source. By "place" we mean the variables, the components of compound data structures, and
the implicit transient storage given to the intermediate results of subexpressions. A "source" is
whatever corresponding construct produces the value that is to be put in the place. In the presence
of mutation "place" must be interpreted in spacetime: the value in a place during any particular
period when that place is not mutated comes from just one source, and when the place is mutated,
the new value also comes from just one source.

If we allow places to receive values from multiple sources, an individual source need no longer
be responsible for computing the complete value that goes into a place. Indeed, some partial
information about a value can already be useful to some client, and can perhaps be augmented by
some other source later (which perhaps used that partial knowledge to deduce the refinement!).
Also, if places can accept values from multiple sources, we need not decide in advance which
computation will end up producing the value that goes into a place. We can instead construct
systems whose information flow depends on how they are used.

The idea that a place holds partial information, rather than either nothing or the completed
result of a computation is a fundamental change to the infrastructure of computation. A sys-
tem built on propagators can accommodate such paradigms as functional computing, constraint
propagation, and SAT solving. It can be a flexible and expressive substrate for systems that main-
tain provenance of data, and provide advanced support for debugging, security, auditing, and
accountability. It can accommodate optimal implicit search to support exploratory behavior.

Anticipated Contributions and Representative Impact

Our goal beyond the seedling is to produce a naturally concurrent and distributed model and
infrastructure for computation that will make it easier to build systems that are reliable in the
face of natural failure and deliberate attack. We will have support for auditable and accountable
systems that are robust and adaptable to novel applications. We will have a computing paradigm
that supports novel exciting applications.

Our general claim is that propagators offer a paradigm shift in the way programming is
done, and inasmuch as computing is everywhere, everything will be touched by a revolution in
computing. The following suggest particularly important areas ripe for early application:

Web-enabled information superiority with propagators maintaining truth. In information-
rich, web-exploiting systems, conclusions are rarely final: new information and new sites are
always entering the system, rendering any sort of closed-world hypothesis inoperable. Moreover,
the massive scale and distributed architecture of the web ensure that reasoning engines will en-
counter contradictions, so that provenance and truth maintenance must be addressed as a matter
of course. The propagator framework subsumes these mechanisms as part of the base language
implementation, which frees programmers from the need to manage them explicitly.



3

Evolution of complex systems with propagators promoting incremental replacement. Mili-
tary systems are big and monolithic. Consequently, they are mightily costly to replace, but often
impossibly difficult to evolve, with the net result that they are often obsolete in total just be-
cause they are obsolete in part. The propagator box-and-wire paradigm enforces a new kind
of modularity that enables new software to coexist with old, either by box replacement or box
collaboration.

Increased security with propagators exposing flows. No single idea will solve the security
problem, but the wires in propagator-based systems provide natural points of interest for moni-
toring systems aimed at noting suspicious patterns of behavior.

Steps toward a propagation-based, engineering-inspired model

In the 1990s we developed Amorphous Computing, where large numbers of asynchronous process-
ing elements are locally interconnected in irregular ways. This gave us some deep understanding
of how distributed algorithms may be built that are independent of the local connectedness of a
system. During the past two years, Beal and Sussman have demonstrated the use of controlled-
hallucination wrappers for generalizing system components. And during the past few months,
Radul and Sussman have developed and published papers about a new propagator model that
seems to accommodate all other known programming models in a natural way.

Our next steps are clear. Our current propagation models are data-push models: computation
occurs if it can. But to be efficient we also want need-pull models: computation is only done if
the results are needed for some other reason. We will develop a request-acknowledge protocol
that allows us to combine these. We are encouraged because requests are themselves a kind of
data that can propagated, with dependencies, but there are real problems lurking here that may
be difficult to resolve.

Our current propagation models are simulated with sequential processes. We will build and
study truly concurrent versions to understand the engineering tradeoffs implied by communication
costs. We must demonstrate that our propagation model is scalable to large systems with multiple
processors and distributed memory.

Our current propagation models are expressed in a monolithic linguistic structure. We must
evaluate our claim that we can accommodate and combine alternative programming models so
that they can cooperate in a unified system.

Also, we must understand the problems of resource allocation and deallocation implied by
propagation models. For example, how should we arrange garbage collection of propagators and
cells in a distributed, shared, multiuser environment?

Seedling demonstration

Several criteria for a seedling-level demonstration come to mind:

• Demonstration involves one or more systems of larger than illustration size, to demonstrate
scalability.



4

• Demonstration involves a system of systems, to demonstrate value in large-scale development.

• Demonstration involves replacement of one large subsystem with another, to demonstrate
incremental replacement.

• Demonstration involves interaction of systems via the web, to demonstrate value in assem-
bling web-based components.

• Demonstration involves systems written in diverse languages, running on multiple machines
to demonstrate flexibility.

• Demonstration involves systems of interest to DARPA.

Accordingly, we propose a concentrated effort to rework a medium-sized concept-oriented re-
search system and to tie that system to large, well-established language parser on one end and on
the other end to a relatively small, rapidly evolving, vision and spatial reasoning system.

The Genesis language and concept-formation system learns from examples how to translate
the results produced by syntactic parses into a dozen semantically explicit descriptions of class,
change, place, path, trajectory, transfer, time, cause, coercion, containment, mood, and role. The
system, developed by Patrick Winston and his students in Java, is a prime candidate for the center
of the seedling generation because its architecture is already informed by the propagator idea;
because it contains on the order of 75 distinct components; because a central goal is to form a
tightly coupled loop that grounds understanding in vision and spatial reasoning, because it uses an
off-the-shelf, unexpectedly unreliable syntactic parser that we are extremely eager to replace, and
because the time has come to connect it with a vision and spatial reasoning program now emerging
from another DARPA seedling. In the illustration, the system interprets a sentence involving an
abstract trajectory.

The Genesis vision and spatial reasoning system, developed by Sajit Rao and his students in
C++, learns to recognize instances of actions such as give, take, jump, push, and drop involving
two students and a ball. The two sides of the Genesis system—language and vision—are meant
to demonstrate the power of grounding language in vision and visual imagination and the power
of conditioning vision with problems and expectations delivered via language. In the illustration,
the system judges a video to be, with equal likelihood, a give and a take.



5

The START system is a publicly-accessible information access system that has been available
for use on the Internet since 1993 (http://start.mit.edu/). The system, developed by Boris Katz
and his students in Lisp, answers natural language questions by presenting components of text
and multimedia information drawn from a set of information resources that are hosted locally
or accessed remotely through the Internet. These resources contain structured, semi-structured
and unstructured information. Start itself is a prime target for downstream exploitation of the
propagator idea, as natural language naturally involves ambiguities that have to be resolved by
multiple experts. For our purposes, however, START is to be viewed as ported box, accessed over
the web, which receives sentences on a wire and puts one or more syntactic analyses on another
wire. In the illustration, the system prepares to answer a question about Iraq.

We satisfies all the listed criteria by connecting the Genesis language system, the Genesis
vision system, and the START system and by making explicit use of propagator idea in the Genesis
language and concept formation system.



6

Work Statement

During the 12-month seedling effort, Professor Gerald J. Sussman will lead the conceptual de-
velopment of the propagator idea along with Alexy Radul (post doc as of June, 2009) and three
students.

They will:

• Report on development of basic data-pull implementation.

• Report on designs for implementations with true concurrency.

• Deliver propagator 1.0 Scheme code for use by others.

Professor Patrick H. Winston will lead the Genesis–Language—Genesis–Vision—START demon-
stration working with three students.

They will:

• Rebuild the language-and-concept portion of the Genesis system on an explit propagator
foundation.

• Instrument the explicit propagator foundation so as to observe and study behavior patterns.

• Connect the Genesis language-and-concept system to the START web server using a propa-
gator riding on an http substrate.

• Connect the Genesis language-and-concept system to the Genesis vision-and-spatial reasoning
system using a propagator riding on a remote-procedure-call substrate such as SOAP.

• Report on gains experience by using propagator ideas.

• Deliver propagator 1.0 Java code for use by others.


