Towards Super-Human Decision Making: A Framework for Decision Support Delivery

Nicole Seo

Department of Electrical Engineering & Computer Science EECS Undergraduate Research & Innovation Scholar

Julie A. Shah

Interactive Robotics Group, CSAIL Faculty Advisor

VISION

Background: 5 Rights of Decision Support

A decision support system should get:

- system should get:

 1 the right
 information
- to the rightpersonin the right
- format
 4 through the right
 channel
- at the right point in workflow

Previous Work

Right #1: extracting actionable information₃ Right #2: pre-defined mapping (operator to system)₂ Rights #3-5 (Decision Support Delivery): specialized approaches in healthcare, aviation, military, etc.

Research Question & Proposed Solution

- Q: How can we unify the findings into a domain agnostic framework to better meet the last three Rights of Decision Support?
- A: By identifying the key design dimensions in the state cycle of a decision support delivery event.

STEPS

Step 1: Design Framework for Decision Support Delivery

Step 2: Support Taxonomy

Step 3: Quantification

Experimental process:

- 1 Create design templates
- 2 Implement DSS's
- 3 Determine exemplar for each category of support

Sample template:

NEWS

Step: 1₫ 2₫ 3□

Current Work: Journal paper to present design framework

Up Next:

Labor & Deliery Simulation DSS Experiments

CONTRIBUTIONS

This work contributes to the field by:

- Unifying the disjoint findings on DSS design from various domains
- 2 Providing a framework for discourse in troubleshooting and improving DSS's
- 3 Working to bridge the gap between intelligent systems and human operators

Key References

- Chai, H., & Du, Y. (2012, August). A framework of situation awareness based on event extraction and correlation for military decision support. In Mechatronics and Automation (ICMA), 2012 International Conference on (pp. 192-196). IEEE.
- decision support. In Mechatronics and Automation (LMA), 2012 international Conference on (pp. 192-196). IEEE.

 2. Klann, J. G., Szolóvits, P., Downs, S. M., & Schadow, G. (2014). Decision support from local data: creeting adaptive order menus from past diriction behavior. Journal of biomedical informatics, 48, 84-93.
- Liao, S. H. (2005). Expert system methodologies and applications—a decade review from 1995 to 2004. Expert systems with applications, 28(1) 93-103.
 Parascuraman, R., Sheridav, T. B., & Wickers, C. D. (2000). A noted for types and levels of human interaction with automation. Systems, Man end Cyberreitor, 1974. Systems and Humans, IEEE Transactions on, 30(3), 826-8277.
- Van Der Sijs, H., Aarts, J., Vulto, A., & Berg, M. (2006). Overriding of drug safety alerts in computerized physician order entry. Journal of the American Medical Informatics Association, 13(2), 138-147.

Acknowledgements

Thank you to Professor Julie Shah, Matthew Gombolay, Jessie Stickgold, and the 6.UAR staff.

186

Aldehyde-Stabilized Cryopreservation

A technique for whole-brain nanoscale brain-banking

Vision

To create a **brain banking** technique which can:

- 1. Preserve whole brains of any size.
- 2. Preserve brains indefinitely.
- 3. Preserve nanoscale details such as synapses.
- Be compatible with common neuroanatomical stains and tests.

Aldehyde-stabilized cryopreservation (ASC) is the first brain-banking technique to meet all four of these criteria.

Steps

 Deliver glutaraldehyde, a chemical fixative, via perfusion to crosslink proteins and rapidly stabilize the brain's structure.

 Use sodium dodecyl sulfate (SDS), a surfactant, to permebalize the brain's blood brain barrier.

Hach Na

 Slowly add ethylene glycol, a cryoprotectant, to prevent freezing damage.

Ctoro the brain at 125°C indefinitely

Methods and Results

Control

ASC

News

- Published in Cryobiology.
 McIntyre, Robert L., and Gregory M. Fahy. Aldehyde-stabilized cryopreservation.
 Cryobiology 71.3 (2015): 448-458.
- Using ASC-preserved brains, we won the Brain Preservation
 Foundation Small Mammal Prize Feburary 2016.

Contributions

- Created Aldehyde-Stabilized Cryopreservation (ASC), the first whole-brain nanoscale brain banking technique.
- Showed that ASC enables long term preservation of valulable brain samples.

A Natural Language Understanding System Based on Sequence-Seeking

Josh Haimson, Patrick Henry Winston

MIT EECS Research and Innovation Scholar

Natural Language Understanding

Most Data is Unstructured Humans Naturally Interact Through Language

Natural Language Understanding aims to build computer systems that communicate through language and learn from existing language data

Current Approaches Have Limitations

Computational Linguistics Statistical Natural Language Processing (NLP)

ρ("window" | "the boy broke the")

Counterexample: "The boy the ball window broke"

Humans regularly use and understand ungrammatical and ambiguous language, while most computational systems cannot

Vision: Align Expectations with Perception

"The whole is other than the sum of its parts"

A mental model of a triangle is aligned with the image above so that it is perceived as a triangle rather than circular segments

Research Goal: Demonstrate a Natural Language Understanding system that understands ambiguous language by aligning models of language with perceived information

Sequence-Seeking Mimics Perceptual Alignment

The sequence-seeking algorithm finds a **sequence of transformations** from high-level models to perceived information

Sequence-Seeking for Natural Language

Grammar and context provide constraints which are used to find transformations from stories to perceived messages

Anticipated Contributions

Demonstrate a natural language understanding system capable of understanding ambiguous and ungrammatical language

Implement the sequence-seeking algorithm to align models of language with perceived messages

Implement grammar as a bottom-up information stream which constrains language

Implement context as a top-down information stream which constrains possible interpretations

Demonstrate how top-down models can be built from a set of stories