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Abstract.   By extending Cyc’s ontology and KB approximately 2%, Cycorp and Cleveland Clinic 
Foundation (CCF) have built a system to answer clinical researchers’ ad hoc queries.  The query 
may be long and complex, hence only partially understood at first, parsed into a set of CycL 
(higher-order logic) fragments with open variables.  But, surprisingly often, after applying 
various constraints (medical domain knowledge, common sense, discourse pragmatics, syntax), 
there is only one single way to fit those fragments together, one semantically meaningful formal 
query P.  The system, SRA (for Semantic Research Assistant),  dispatches a series of database 
calls and then combines, logically and arithmetically, their results into answers to P.  Seeing the 
first few answers stream back, the user may realize that they need to abort, modify, and re-ask 
their query.  Even before they push ASK,  just knowing approximately how many answers would 
be returned can spark such editing.  Besides real-time ad hoc query-answering, queries can be 
bundled and persist over time.  One bundle of 275 queries is rerun quarterly by CCF to produce 
the procedures and outcomes data it needs to report to STS (Society of Thoracic Surgeons, an  
external hospital accreditation and ranking body); another bundle covers ACC (American 
College of Cardiology) reporting.   Until full articulation/answering of precise, analytical queries 
becomes as straight-forward and ubiquitous as text search, even partial understanding of a 
query empowers semantic search over semi-structured data (ontology-tagged text), avoiding 
many of the false positives and false negatives that standard text searching suffers from.     
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1. INTRODUCTION 
 

Artificial intelligence systems are increasingly capable of doing the inference required to flexibly 
answer queries, and an increasing amount of data is becoming available in forms that support 
such inference (Lehmann, Schüppel and Auer 2007).  Current successes in the area of 
knowledge capture promise a rapid increase in such formally represented data, and a large scale 
knowledge base such as Cyc (Lenat and Guha 1989, Matuszek et al. 2006) which contains 
appropriate background knowledge (domain knowledge and general knowledge) supports 
semantically integrating  that data to answer queries.   A substantial barrier to the widespread 
use of these systems is query formulation: getting the system to correctly understand what the 
user is trying to ask.   

In previous knowledge stores (e.g., relational databases), fixed data schemata supported the 
skilled construction of fixed formal queries, often embedded directly in application program 
code and expressed in unambiguous query languages such as SQL.  At the same time, the small 
number of relations in these data bases made them comprehensible, allowing query 
construction — by SQL-fluent programmers or by end users via a custom query-construction 
application for that database — after a fairly short training period.   

Querying knowledge bases, even those with weak inferential support such as the current 
generation of RDF triple stores, is an entirely different matter.  With a potential relational- and 
type-vocabulary in the millions of terms, users need much more support in constructing even 
straightforward queries.  And when the query language itself is more expressive – supporting, 
e.g., nested logical quantifiers and temporal and modal operators – the need to support users in 
correctly articulating their intended query is even more dramatic.  This paper describes progress 
we have made in developing such a query articulation assistant, and how we are applying it in 
the domain of healthcare. 

Clinical researchers — and clinicians — need to pose queries that are quite long and convoluted.  
To further complicate matters, patient health records and procedure notes are generally 
fragmented across many different, large, stove-piped databases and knowledge stores, especially 
where those records cross hospital departments and cross decades of time.  Cycorp and 
Cleveland Clinic Foundation (CCF) have built an ad hoc query answering application called SRA 
(for Semantic Research Assistant), based on Cyc (Lenat and Guha, 1989).  A physician types a 
query in English to SRA.  Then, working together in English, they translate it into a logically 
equivalent unambiguous predicate calculus form P from which Cyc then designs and executes 
appropriate database calls.  SRA displays answers as they stream back, and can give symbolic 
rationales justifying each, bottoming out in general medical facts (with provenance), expert-
articulated rules, specific patient records, contemporaneous operation notes, etc.    

Preliminary results are encouraging: SRA is now used to ask each clinical research query 
involving cardiothoracic surgery, cardiac catheterization, and percutaneous coronary 
intervention.     Prior to SRA, approximately 300 new queries in those domains had been posed 
and answered each year, with most queries requiring 1-10 weeks (occasionally several tens of 
weeks) of real time to be answered to the physician’s satisfaction; in 2010, using SRA, such 
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queries take  5-50 minutes to produce satisfactory answers (occasionally several hours), and 
over 2,000 queries are processed each week.  Some of that large throughput is due to the fact 
that persistent bundles of queries in those domains are re-run each month (for internal quality 
testing purposes) and quarterly (for external third-party reporting purposes): e.g., one bundle of 
275 queries produces the procedures and outcomes data CCF needs to report to STS (the Society 
of Thoracic Surgeons, a hospital accreditation and ranking body), and a bundle of 256 queries 
produces the data CCF needs to report to ACC (the American College of Cardiology).  

This same approach has also been applied, in virtually unchanged form, to support queries 
against a terrorism knowledge base (Deaton et al. 2005), corporate financial data, and wireless 
network activity (Fortuna et al. 2009); we call that domain-independent portion of SRA “CAE” 
for “Cyc Analytic Environment” (Siegel et al. 2005).   It is supported by systems for knowledge 
capture which, again, do not require knowledge of the underlying representational target 
(Schneider et al. 2005).   Text search is ubiquitous and useful today, thanks to Google and its 
predecessors, despite the high frequency of false positives and false negatives and the 
shallowness of inference being performed (due to lack of understanding of the query and lack of 
understanding of the text corpora being queried against.)   Our long term goal for CAE is to 
make the precise articulation (and answering) of analytical queries over multiple knowledge 
sources almost as straight-forward for end users, almost as useful, and through that path almost 
as ubiquitous as text search is today. 

 

2. THE  CHALLENGE  
 
 
Clinicians and clinical researchers often want to pose ad hoc queries, such as: 
 
 
 
 
 

The researcher here is looking for patient cohorts for clinical trials worth proposing and 
undertaking — in this case, e.g., investigating whether there are unusually high (or low) risks of 
infection by using pAV prostheses in ways they were most definitely not designed for, and 
whether there have been enough cases for a trial (to which the answer is No, for the data bases 
of hundreds of thousands of CCF patients treated over the past 20 years – there have not yet 
been enough cases for a trial.)   

A clinician might ask the very same ad hoc query when looking for assistance choosing among 
treatment options — for example, if their patient is a young female addict with an extremely 
small mitral valve annulus and a history of repeated episodes of tricuspid valve infection. The 
clinician could issue this query, knowing that aortic valves come in smaller sizes than mitral 
prostheses, and because they remember reading something (Cardarelli et al. 2005) about pAV’s 
(pericardial aortic valve prostheses) being unusually resistant to infection and anticoagulation 
compared to mitral valve prostheses.   Here the answer is Yes: that usage of pAVs is rare but 
definitely not unprecedented.   

Q1:  “Are there cases in the last decade where patients had pericardial aortic valves inserted in 
the reverse position, to serve as mitral valve replacements, and how often in such cases did 
endocarditis or tricuspid valve infection develop, and how long after the procedure?” 
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The Cleveland Clinic Foundation (CCF) is one of the leading medical research institutions in the 
world: clinical researchers formulate hypotheses and ask ad hoc queries about the hundreds of 
thousands of patients whose records have been painstakingly maintained over decades (Kaple et 
al. 2008, Mihaljevic et al. 2008, Koch et al. 2008, Hoercher et al. 2008, Gillinov et al. 2008, 
Sabik et al. 2008, Hickey et al. 2008).  And yet, even at CCF, getting an ad hoc query answered 
has been a long and convoluted process, of consultation with multiple intermediaries some of 
whom are familiar with the underlying medicine and some of whom are familiar with the 
available data bases and registries.  Often a back-and-forth clarification dialogue occurs between 
the researcher and the medically-trained intermediary:  “What exactly does 'isolated procedure' 
mean in your query?”  “When you say 'recently', how long ago do you mean to include?”.  A 
second intermediary, a data base access specialist (DBA), transforms the resulting specification 
into an actual SQL or SPARQL query, does the “data pull”, and sends the results back to 
intermediary#1, who sends them back to the physician.  Often further back-and-forth dialogue 
occurs between the two intermediaries, occasionally requiring intermediary#1 to go back to the 
physician for some further clarification.  It is not uncommon for this entire process to iterate 
several times, as the query is refined: the email logs tracking 900 of these queries over the last 
few years at CCF show a mean time for this process to complete of approximately one month of 
real time, effectively limiting researchers  to about a dozen such queries per year.   

Our aim with SRA is to enable physicians to pose their complex ad hoc questions directly,  
getting them understood and answered in four minutes rather than four weeks.   Clinical 
researchers might  explore  what today is a typical year's worth of hypotheses  in one afternoon, 
and  clinicians — who today cannot even  consider asking ad hoc queries relevant to a particular 
patient  – could perform an individually tailored outcome analysis in real-time for that patient.  
As health-care providers move towards ubiquitous adoption of electronic patient records, the 
power of such data-driven clinical practice will only increase.   

Although the application presented in this paper, SRA, is focused on medical research,  similarly  
complex ad hoc queries, and similarly convoluted data acquisition and aggregation processes, 
occur in many other domains.  A similar iterative query-articulation process, but with human 
research librarians as intermediaries, was once the standard (Lang, Tracy and Hepburn 1957) in 
many fields.   

Why was it that, until SRA, neither the clinician nor the clinical researcher could expect to have 
ad hoc queries like Q1, above, answered in minutes instead of weeks?  Partly it is because of the 
many, and significant, AI challenges which have stood between the enquirer and a deep 
understanding of their query: 
 
Challenge 1:  Getting the literal query understood: converting it from highly ambiguous 
natural language to an unambiguous logical form.  Typical queries such as those found on NIH's 
clinicaltrials.gov website are likely to contain numerous inclusion and exclusion criteria; 100- 
and 200-word queries are common1

                                                        

1 For example, 

.  But the state of the art of natural language parsing today 
cannot reliably parse even shorter ad hoc queries such as Q1 into a precise, unambiguous logical 
or data base query language representation.   

http://clinicaltrials.gov/ct2/show/NCT01030328?term=pav&rank=4  takes 258 words just 
to state its inclusion and exclusion criteria. 

http://clinicaltrials.gov/ct2/show/NCT01030328?term=pav&rank=4�
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Challenge 2:  Getting the intended query understood.  Often the physician will leave off some 
obvious clauses and details: temporal, spatial, causal constraints, equality or inequality 
constraints, etc.  For example, in Q1, the physician might mean “...patients at this medical 
center”,  and/or  “...aortic valves with the type and manufacturer we have in stock now”,  
and/or  “...ignoring cases where the endocarditis developed more than a year after the 
procedure”,  and/or  “...in which the patient survived at least 6 months post-procedure”.   
 
Challenge 3:  Given a complete, unambiguous, logical form of the intended query, finding the 
answer to that query.  This involves identifying the relevant rules and algorithms that will serve 
as an acceptable basis for computing an answer to that query; deciding which of  many 
(inevitably heterogeneous) data bases and other structured information sources to retrieve 
information from;  actually gathering the relevant data from those sources; and, finally, carrying 
out the computations and reasoning steps to produce the answer.   

o At an infrastructure level, this means worrying about protocols and channels to access 
the n information sources, dispatching the m different low-level SQL or SPARQL or 
other API atomic queries, combining the sub-queries’ answers, etc.   

o At a higher level, this means being able to formulate a complex plan for efficiently asking 
those n data sources those m atomic queries.  For each atomic query, there may be 
additional reasoning required to plan, e.g., the best order of conjuncts. 2

Challenge 4:  Present the answers to the physician in a useful fashion.  This utility derives 
from presenting data in a clear on-screen layout, and in a timely fashion; what “useful” means 
may change from user to user, situation to situation (e.g., if they are faced with a critical 
realtime decision), and query to query.   

   

o SRA explicitly reasons about presentation, transforming the underlying logical data into 
human-interpretable form – for example, choosing appropriate rows and columns, and 
appropriate row and column headers,  for a matrix of answers  which it then presents to 
the user in the form of a table.   Furthermore, the contents of an individual cell in that 
table are converted from the formal, and often idiosyncratically coded, language 
returned by the information sources into something that will be meaningful to the 
physician.  To take an extreme example, a cell displaying as “#bnode-50943” would mean 
nothing to the physician, compared to the form produced by SRA’s use of Cyc Natural 
Language Generation:  “The CABG+MVA performed at CCF by Dr. Joshua Stuyvesant at 
8am on March 3, 2007”.) 3

o A second aspect of “useful fashion” here refers to temporal presentation as well: if there 
are going to be 4718 cases matching the criteria, it can be much better to start streaming 

   

                                                        

2 Although SQL optimization is standard in relational data base systems today, an increasing amount of 
medical data is represented in the newer RDF/OWL semantic triple store systems accessible by SPARQL 
queries, for which such optimization has not yet become available, resulting in queries taking orders of 
magnitude too long.  We expect this problem to solve itself in the next five years, as commercial SPARQL 
optimization catches up with SQL optimization. 
3 For HIPAA reasons, these and other instance-level healthcare data presented in this article, are 
anonymized references to fictional patients and events. 
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a few of them in every second, rather than waiting 4 minutes and then displaying them 
all at once.  Not only are users impatient, they often can spot “mistakes” in the first few 
answers returned, e.g. due to a clause they omitted – after which they would just abort 
the query, revise it, and re-ask it.   

o A third component of what is meant here by “useful fashion” is to properly integrate and 
organize information coming from several different sources, placing those pieces down 
to form a coherent mosaic picture of the patient as a whole.  E.g., given the cities and 
time-stamps on a large number of disparate elements of this patient’s data, arrange them 
into a single chronology of where this patient resided and for how long.   

o A fourth component of “useful” here refers to assessing the quality, certainty, and 
relevance of the answers, and then sorting or filtering or annotating the answers based 
on that assessment 

Challenge 5:  In cases where the system would otherwise fail to return an answer, it should 
“fail soft”: i.e., provide some form of semantic search results, drawing from available texts in 
unstructured prose (or almost unstructured form, e.g., free text that has been tagged with terms 
from an ontology).  That means fetching existing documents — recent literature, Web pages, 
internal reports — relevant to the user's query.  The challenge is to produce higher retrieval 
accuracy than keyword-based search engines, by drawing on general knowledge, medical 
knowledge, discourse knowledge, and context, to avoid false positive inclusions and false 
negative omissions.4

 

 

 

3. MEETING THE CHALLENGE 
 

3.1. From the user’s point of view 
In meeting this challenge, SRA implements a query-handling workflow illustrated in Fig.  1,  
presented via the interface shown in Fig.  2. 

The numbers 1-4 in the red circles on Figures 1 and 2 correspond to each other, and also 
correspond to the paragraph numbers 1-4 on the next few pages, explaining the workflow:   

 1. The user types in an English query.  Since accurate parsing of complex medical queries to 
precise logical representations is well beyond the state of the art,  the main process used is an 
interactive clarification dialogue between the system and the user (see 2, below).   The system  
reliably identifies concepts in the query like “AVR” and “left atrial enlargement”, and uses the 
Cyc  semantics of those concepts to identify  simple temporal, spatial, and role relationships, 
which are used to construct candidate components for a predicate calculus query.  Some of these 

                                                        

4 Although fail-soft capabilities were implemented in the CAE, on which SRA is based, and have been 
applied experimentally to the use of outcome data in end-user search (see Section 3.2.4 below), they have 
not been integrated deeply into the SRA’s initial research cohort selection application. 
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components have open variables that will be used in connecting the components together into a 
complete query.  Even at this point, learned knowledge (a trained decision tree) and background 
knowledge from the KB have been used to filter the possible fragments into a manageable set 
with a high likelihood of expressing the user’s intent.   

  2. Each fragment is represented in predicate calculus, internally, but what the user of the 
system sees is a paraphrase of each fragment back into English as a set of fill-in-the-blank 
fragment  phrases, where the blanks represent variables (e.g., “pericardial valve model _?x_ 
was implanted”).  Another  of the fragments listed in Figure 2 is “the patient ID is     ”; this is a 
straightforward example of inferring what the user intended to say but didn’t literally say (see 
Challenge#2, above), since most user complete queries end up with  a column in the answer 
table containing  CCF patient id numbers, the system infers the need for such a query fragment.  
The user highlights the fragments representing parts of the query they had in mind, and tells the 
system to combine them. 

 

Figure 1: SRA interacts with clinical researchers in English to build and execute precise logical queries against 
multiple knowledge sources. It uses the Cyc ontology and Cyc inference, data access, and natural language 
components to support query building, knowledge federation, and answer presentation. The same capabilities 
can be used to support collaborative KB building. The numbers 1-4 in the red circles refer to more detailed 
discussion in the text, and also correspond to the like-numbered UI components in Fig 2. 
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 3.  It is not a simple matter to combine a large number of fragments, often with two or more 
free variables, into a single correct nth-order predicate calculus query.  The huge conceptual 
vocabulary from which the fragments have been selected makes the problem especially difficult, 
since it would be impractical5 to construct the corresponding set of hard-wired combination 
rules.  SRA brings the entire Cyc knowledge base and inference engine to bear in support of the 
combination process.  Common sense, discourse pragmatics, context, medical knowledge, 
syntax, etc.  all come into play.  At a predicate calculus level, two of the most common and most 
important decisions being made are: (a) which variables unify with which other variables (i.e., 
refer to the same thing)? and (b) what is the type of each quantifier (universal or existential) 
and the scope/nesting of the quantifiers?  In this case, e.g., the variables might include the 
patient, the surgeon, the valve replacement procedure, the valve that is implanted, the date/time 
of the procedure, etc.  Common sense enables Cyc to conclude that the patient and surgeon are 
distinct variables, and also enables it to determine that the valve and the implanting are distinct 
variables.  Discourse and domain knowledge enable it to infer that “the patient” refers to a single 
individual, within the query, as otherwise it would be absurdly productive (lead to a vast number 
of unrelated answers).  By leveraging the enormous existing Cyc KB (Fig 3), it was only 
necessary to add the specifics for this project: for example, that AVRs are surgical procedures, 
and that pericardial aortic valves are medical implants6

                                                        

5 The cardinality of such a set would exceed the number of atoms in the universe. 

.  The former generalizes in Cyc’s 
ontology to event, and the latter generalizes to tangible object, and Cyc has, since 1985, 
understood the sort of disjointness between those collections (Lenat and Guha 1989) which in 

6 The Cyc term MedicalCareEvent was created fifteen years earlier, on Jan 24th 1996.  The Cyc term  
Implant-Medical was created on Aug 26th 1999 and had additional assertions added in 2001, ’02, ’03, ’04, 
’06, ’07, ’08, and ’09. 

 1 

 

 2 

 

 3 

 

 4 

 
Figure 2.  The SRA (Semantic Research Assistant) system in use, building a formal understanding of the 
user’s intended query (for a cohort of patients). 
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turn entails that different variables must represent these two concepts all the way through to the 
combined query.  By contrast, a patient is known to be a human being, which is exactly of the 
correct type to play the role “recipient of service” in a service event such as a surgical procedure.  
Therefore, only one variable is needed to represent the CCF patient (who necessarily has some 
CCF id number) and the recipient of the AVR procedure.  If the user now adds a clause about the 
primary surgeon, Cyc uses medical knowledge to infer that the patient is not the surgeon. 

  

 

 

 

 

 

 

4.The user clicks ASK, and the SRA system makes use of Cyc background and domain 
knowledge, together with meta-knowledge about the CCF data bases, to produce the appropriate 
SPARQL and/or SQL query or queries, dispatch them to the appropriate data bases, and then 
arithmetically and/or logically combine the results into an answer table (this general capability, 
which we call Semantic Knowledge Source Integration (SKSI) (Masters and Güngördü  2003 ).  
Because these results are returned from inference as logical symbols, which range from nearly 
incomprehensible to completely incomprehensible, Cyc’s NLG (natural language generator) 
(Coppock and Baxter 2009, Baxter et al. 2005) is used  to render table entries comprehensible.  
For the simple query shown, 1132 answers were found.    

  

Figure 4.   SRA   logical   justifications encourage 
user trust in answers. 

 

Figure 3: This assertion about pericardial aortic valves (representing the fact that they are medical implants) was added in 
2007, as a simple subset (genls) ground atomic formula. This assertion allows Cyc to infer many things about pAV’s, such 
as the fact that -- drawing on years-old Cyc assertions – the valves should not in general be treated as events or people. 
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Figure 5.  The English paraphrase of a temporal 
constraint, generated by Cyc. Below is its 
redundant (but pragmatically useful) graphical 
timeline representation. 

Figure 4 illustrates how the user can click on an answer to display the logical “proof” that led 
SRA to it, rendered as a natural language argument (Baxter et al. 2005).  The data store being 
queried did not represent this device as a pericardial aortic valve, but as a Model9000IDE; Cyc  
provides the background knowledge that each 9000IDE is a pericardial aortic valve prosthesis, 
and (from its ontology of processes) that an implantation of an aortic valve prosthesis is a 
replacement of the patient’s aortic valve with that prosthesis, and so on. 

Such small “impedance mismatches” between the way the query is stated and the way the 
various data base schemata carve up and represent the data are pervasive; they are part of what 
makes this a challenging problem.  E.g.: 

• The physician’s query asks for 
“…mild valve regurgitation…” but the 
data base represents this as 
“valve_regurg 1+”. 

• The physician asks for “isolated 
CABGs” but the data base merely 
contains a set of primitive properties 
from which one could infer which 
procedures were isolated and which 
were not isolated. 

• The physician refers to patients with 
“left atrial enlargement” but the data 
base stores the left atrium diameter 
in centimeters and medical 
knowledge must be brought to bear 
to decide which patients do and don’t fall into that category (in this case, the Cyc KB has 
one rule that says that adult males fall into that category if their left atrial diameter 
exceeds 4.2cm, and another rule that says that for adult females the cutoff is 3.8cm.)   

This illustrates a partial realization of the promise of AI systems, in this case the use of inference 
to flexibly apply knowledge to solving novel problems.  By representing the meaning of the 
medical terms, and the meaning of each data base’s schema elements, it is possible for Cyc to 
reach   similar conclusions about how data should be connected and therefore find the same 
answers as collaborating human experts with medical and database skills. 

Although SRA enables users to formulate their queries using English, it also takes advantage of 
the fact that it’s a computer communicating via a GUI.   It turns out that users have a difficult 
time keeping temporal constraints straight, if they are presented as English phrases; doing so is 
much easier when they are also drawn graphically.  The “Time Graph” (Fig. 5, Fig. 6) visually 
depicts one or more timelines, and events can be placed in relative or absolute positions on 
those time-lines.  Again, the underlying representation is predicate calculus, so the time line and 
English representations of the queries are automatically kept consistent. The query in Fig. 5 
concerns patients who had septicemia or bacteremia less than a month after an AVR; the 3-box 
Time Graph timeline clarifies (and is equivalent to) the more confusing final five lines of the 
textual paraphrase of the query. 
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Both the Time Graph and the textual paraphrase of the combined query (labeled “3” on Fig. 2) 
are dynamic;  a user can interactively modify, extend, and “explore” them.  A context menu on 
“aortic valve replacement”, e.g., displays the ontology of broader, narrower, and related terms, 
from which the user might select a replacement.  The small “cellphone-reception-bars”   
icon  on Fig. 2 indicates how many answers that part of the query is likely to generate, if 
asked in its present form.  Often the user can tell from the presence of too many, or too few, 
“reception bars”, that they must not have finished correctly articulating their query.   

A reader might wonder whether, and how, the full KB and inference system of Cyc is required 
for this task.  To address this, we metered the SRA system’s use of pre-existing Cyc knowledge 
(that is, assertions entered into Cyc before our collaboration with CCF started in 2007).  We 
certainly expected some re-use, but were surprised to find empirically that hundreds of pre-
existing pieces of prior and tacit knowledge in Cyc were used for each ad hoc query.   Cyc KB 
content was used during each step: interpreting the literal meaning, inferring the intended 
meaning, carrying out the clarification interaction with the user, putting the fragments together 
into a meaningful integrated whole, coming up with a plan for answering the query by going out 
to data bases, optimizing each DB query dispatched, and deciding how best to display the 
Answers to the user.  While there are certainly parts of the Cyc KB that are unlikely to be used in 
the medical domain (facts entered for a historiography thesis about Merovingian France, for 
example), the scale of re-use suggests that identifying the reusable elements in advance, and 
constructing them afresh for each new application would be a difficult and expensive 
proposition.  Having designed Cyc for broad re-use, all those years ago (Lenat et al 1983;  Lenat 
and Guha 1989; Lenat 1995) is now paying off.  In domains where the user is likely to inject 

Fig. 6.  The query “Patients with x less than 
30 days after y in 2009” is ambiguous: 
which of the two events, x or y, had to 
happen in 2009? Graphically displaying 
both interpretations on a timeline greatly 
reduces the chance of error (when 
compared with: just showing the user the 
two lexical paraphrases of the two 
meanings in English.) 
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metaphors and analogies into their queries, even the more esoteric regions of Cyc knowledge-
space may turn out to be useful for understanding the intent of their query. 

3.2.  SRA as Natural Language Technology  
 
Our emphasis in designing the SRA, and the CAE more generally, has been on supplying a 
usable,  responsive, and predictable user experience.  We have therefore avoided the use of the 
most sophisticated parsing techniques available in the Cyc platform and elsewhere in NLP 
research (e.g. Klein and Manning 2003,  Kaplan et al. 2004); while they have the potential to 
produce interpretations of longer spans of the input text than current, lexical-semantics-based 
technique, they do not do so consistently enough and rapidly enough for a predictable user 
experience.  Moreover, the relatively technical nature of medical queries, which are not generally 
highly ambiguous at the lexical level, makes them well suited for a shallower approach based 
around identifying semantic terms used in the query. The shallow semantic interpretation in 
SRA has been augmented with specific parser for important common relations such as temporal 
constraints.    Interpretation, then, depends on dealing with the limited lexical ambiguity that 
does exist,  and dealing comprehensively with ubiquitous syntactic ambiguity. This includes 
producing a manageable set of alternatives from which the user may indicate component 
elements for a final query.  The Cyc natural language generation (NLG) system is relied on 
particularly heavily in this assembly process, both to present candidate fragments for user 
selection, and to generate a clear  reflection of the overall query under construction.  NLG is also 
used for presentation, translating table headers and cell entries into user-comprehensible form, 
and to foster user trust by providing a facility to review system-generated justifications of its 
answers (Fig. 4). The next sections provide a little more detail. 

3.2.1. Term interpretation and filtering:   First, a user query is scanned for single or multi-
word terms  that are known to Cyc.  Coverage is already high (around 24% of the 126,000 most 
accessed Wikipedia pages from a typical hour had a corresponding existing Cyc concept).; for 
domains for which custom knowledge represenation has been done (such as cardiothoracic 
surgery, in the SRA),  term coverage is nearly complete.  Readers can experiment with a slightly 
limited version of this lexical lookup by using the “find” web-service exposed at 
ws.opencyc.org7

 

. This phrase lookup produces a set of candidate interpretations, which are 
then filtered using a decision tree trained for the domain, which eliminates domain-improbable 
senses.  A portion of the tree for SRA is shown in Figure 7, along with an example from another 
domain; because both the training and use of these trees take advantage of the Cyc ontology, 
they can make decisions at a general level (e.g. OrganismPart, MedicalEvent). This enormously 
reduces the number of training examples that must be used; the SRA filter was initially trained, 
for example, by automatically tagging and then manually annotating the relevance of the 
concepts found in a mere 29 example query sentences. 

                                                        

7 The query http://ws.opencyc.org/webservices/concept/find?str=surgery will, for example, return an 
XML document identifying the URI http://sw.opencyc.org/concept/Mx4rvViynJwpEbGdrcN5Y29ycA 
which is the OpenCyc concept for the CycL collection #$Surgery 

http://ws.opencyc.org/webservices/concept/find?str=surgery�
http://sw.opencyc.org/concept/Mx4rvViynJwpEbGdrcN5Y29ycA�
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3.2.2. Syntactic analysis and query composition:  To understand what the user is saying 
to it, SRA recognizes terms and then infers partial meaning – expectations and hypotheses 
about the user’s intent (Shah et al. 2006); syntax is used as an adjunct to this process.  As an 
example, the presence of  the term  ‘Hancock Model 342R’ (a type of valve prosthesis) in a query, 
together with the expectation-driving assertion  

(generateFormulasForElements-TermGenls  
 CardiacValveProsthesis  
 (TheSet   valveProsthesisTypeImplanted  valveProsthesisTypeExplanted))  

causes the system to look for possible arguments for these latter predicates (i.e., 
valveProsthesisTypeImplanted  and valveProsthesisTypeExplanted), based on their argument type 
constraints.  Assertions in the Cyc KB constrain the first argument of the ternary predicate 
valveProsthesisTypeImplanted to be  an instance of HeartValveReplacement-SurgicalProcedure,  i.e., a 
particular surgical event; constrain the second argument to be a type of CardiacValveProsthesis; 
and constrain the final argument to be  a particular individual CardiacValveProsthesis.  
 
The second argument is clearly the valve type Hancock Model 342R whose mention triggered the 
expectation, but once that expectation has been set, any nearby mention of a specific surgery will 
be  strong candidate for argument#1, and a mention of a specific valve (e.g., by its unique 
manufacturer serial number) will be a strong candidate for argument#3.  If suitable arguments 
are not available, the unfilled positions are left as open variables – typed variables that will most 
likely get unified, under inference based constraint, when the user selects other fragments.  At 
that time, all those puzzle pieces, with their accompanying constraints, get fitted together into a 
consistent and plausible whole.  Variables that still remain will be open variables in the database 
queries and will therefore define what columns need to be present in the answer matrix.   E.g., a 
common one of those is the exact date and time of the surgery; another is the patient’s ID#. 

Figure 7:  To provide the precision needed for reasoning, English terms can have many possible 
logical interpretations. Decision trees are used to filter these interpretations of terms in a query to ones 
appropriate to a domain. By using the Ontology, this filtering is done at a conceptual level that requires 
few training sentences and few decision points.  The fragments shown above are substantial fractions 
of the trees in use. Such filtering rules would be nearly impossible to learn at the lexical level. 

http://public2.cyc.com:3622/cgi-bin/cg?cb-cf&c207269�
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SRA’s expectation-driving assertions for the medical domain have been generated manually by 
knowledge engineers, in consultation with domain experts, to maximize usability; this is 
possible because the domain is somewhat narrow.  For broader applications, however, and 
where less control is needed, such expectations can be generated by forward inference. The 
“generateFormulas” sentence above, for example, could have been  generated entirely 
automatically using the facts that (1) the specificity of its second argument type is high and (2) 
this  argument type constraint does not apply to many predicates.  This sort of meta-reasoning 
about predicates and the contents of the KB is straightforward, pervasive, and (therefore has 
been engineered to be) particularly efficient in Cyc.  

 Generally, the filtering decision trees described above, and the use of specific expectations to 
combine terms into fragments, are sufficient to offer users a tolerably small set of potential 
fragments from which to form a query. In some cases, though, syntax is very helpful – in the 
SRA application, for example, where the ordering of events is particularly important, mixed 
semantic/syntactic templates are used to recognize and understand temporal constructions.   
For example, matching the pattern “<Isa:CCFMedicalEvent> between <Isa:TemporalThing> 

and <Isa:TemporalThing>” causes its 
arguments to be interpreted as 
(temporallyBetween-Inclusive <arg1> 
<arg2> <arg3>).  

 It’s worth noting that the broader Cyc 
NL system supports the use of 
patterns of this kind for almost all 
predicates and event types. For 
example, Figure 8 shows the pattern 
that enables parsing of phrases 

“<AGENT> [operate] <DEVICE>”, for any form of the word  “operate”, to be interpreted as an 
event in which a device was used (e.g. “Marvin Minsky operated the PDP-6”).   

Figure 11, below, shows the final stage in query composition, where Cyc uses inference (usually 
supported by assertions  about predicate argument type constraints and collection disjointness, 
as in this case, but potentially using any assertion in the KB) to determine which ways of 
combining a new fragment with an existing query are plausible and which are incoherent.  In 
this surprisingly typical case, it is able to eliminate all possibilities but the correct one in a 
fraction of a second.   Limited meta-reasoning is performed: if two clauses are added with 
descriptions that differ only with respect to specificity (i.e a description of a surgery, and a valve 
repair), they are assumed to refer to different entities; even though it is logically possible that 
the surgery in question is the valve repair, it is unlikely that this was the user’s intent. 

3.2.3. Natural Language Generation is used both  for the interaction with users as they 
express their queries, and in displaying and justifying  the answers found during inference. 
Three kinds of generated text are particularly important: query fragments, variables and table 
headers, and table cell contents. Query fragment generation is driven from KB content that 

Figure 8: General Cyc parsing encodes the lexical semantics of words 
using semantic translation rules. The use of heuristic level (HL) modules 
obviates the need to run these rules dynamically during SRA operation. 
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describes how to generate syntactically correct renderings of predicates and their arguments.  In 
fact, as we’ll describe below (and have described in Baxter et al. 2005), Cyc NLG can render 
more complex logical sentences, and SRA uses that capability both for temporally complex 
fragments, to confirm the overall query, and, on demand, to furnish justifications of answers. 
For brevity, here we’ll confine detailed discussion mainly to the generation of fragments. 

Consider valveProsthesisTypeImplanted, 
the ternary predicate which relates a 
particular valve surgery to the type of 
prosthesis used, and is offered as a 
fragment whenever a user mentions 
something that is known to be a (kind 
of) valve prosthesis.  The Cyc assertion 
in Fig. 9 expresses how this predicate 
and its arguments should be 
generated, including the requirements 
that the arguments be rendered as 
noun phrases,  and that the first verb  
in   "in the heart valve replacement 

:HEART-VALVE-REPLACEMENT, 
:VALVE-PROSTHESIS is implanted 

and is a :TYPE-OF-VALVE-PROSTHESIS" should be an appropriate tense form of “to be” that 
agrees in number with the paraphrase of the first argument of the predicate.  

 

 

 

 

 

 

 

The arguments of the predicate are replaced by concrete events, items and types, variables, or 
sequences of underscores, as appropriate. For speed, when SRA first displays this fragment, it 
does so without agreement; full generation is done in the background, and each of the phrases is 
replaced with the morphologically correct variant as it is ready. 

Because it is important to render phrases involving time clearly, specific patterns for rendering 
portions of a logical sentence are used in these cases. These patterns, which are produced by 

(#$and 
   (#$isa ?PROCEDURE1 
 :PROCEDURE-TYPE1) 
   (#$isa?PROCEDURE2 
 :PROCEDURE-TYPE2) 
   (#$after-CCF ?PROCEDURE1  
              ?PROCEDURE2) 
  (#$dateOfEvent-CAE   
 ?PROCEDURE2    :DATE)) 

(#$and (#$isa ?INFARCTION #$HeartAttack)  
     (#$after-CCF      ?INFARCTION      
  ?MEDICALLY-RELATED-EVENT) 
     (#$isa ?MEDICALLY-RELATED-EVENT 
           (#$SubcollectionOfWithRelationToTypeFn 
 #$HeartValveReplacement-SurgicalProcedure  
                #$objectActedOn    #$AorticValve)) 
      ( $d f  

 
             

"What aortic valve replacements in 2007 occurred before what myocardial infarctions?" 

Mt:  EnglishParaphraseMt 
(genTemplate  valveProsthesisTypeImplanted   

              (ConcatenatePhrasesFn   
                     (BestNLPhraseOfStringFn "in the heart valve  
    replacement")   
                      (TermParaphraseFn-NP  :ARG1)   
                      (BestNLPhraseOfStringFn  ",")   
                      (TermParaphraseFn-NP  :ARG3)   
                      (HeadWordOfPhraseFn   
                              (BestVerbFormForSubjectFn  Be-TheWord   
                                      (NthPhraseFn  2)))   
                      (BestNLPhraseOfStringFn  "implanted  and  is  a")   
                      (TermParaphraseFn-NP  :ARG2))) 

Figure 9.  A Cyc NLG (natural language generation) assertion. 

Figure 10: Multiple components of a logical sentence can be selected for simultaneous paraphrase. Because the 
logical sentence on the right matches the pattern on the left, a specific generation template can be used to generate 
the clear English shown in red below in quotes. 
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forward inference, involve a template, as shown on the left of Figure 10, and a generation 
template similar to the one shown in Figure 9, and produce a concise paraphrase of all matching 
parts of a logical sentence. The query sentence in the figure is paraphrased as “"What aortic 
valve replacements in 2007 occurred before what myocardial infarctions?".  

Since SRA users are formulating queries, the system needs to have a way to refer to the items 
they are trying to find. It does this using variables and corresponding table headers.  Both are 
generated using constraints derived from the context in which they appear. In some cases, Cyc 
has explicit knowledge of how to refer to the role of a predicate argument; for example the 
assertion (denotesArgInReln  Diagnose-TheWord CountNoun hasDiagnosis 2) means that the 
second argument of the predicate “hasDiagnosis” can be referred to as “diagnosis”, the count 
noun form of the word “diagnose”. There are 1750 such assertions in the KB, but if this 
information is not available, more general constraints are used: the argument type constraints 
for the predicates in which the variable is used are gathered (for example, 
valveProsthesisTypeImplanted,  which we saw above, is constrained to have a valve replacement 
procedure as its first argument, a type of heart valve prosthesis as its second, and a particular 
valve as its third), along with explicit type constraints on the variable (via “isa” [instantiation], 
or “genls” [subclass], clauses in the query). The most specific of these constraints are tried first, 
and the first one that can be rendered as a non-plural noun, has not been used elsewhere, and is 
not more than 30 characters long, is used.   In the user interface screenshots, one can see several 
variables and column headers that have been generated this way, including “PATIENT”, 
“BLOODSTREAM-INFECTION” and “ELAPSED-TIME”.   Recently, in response to user feed-
back, the system was altered to maximize variable name consistency; it no longer replaces a 
variable name with a new one merely  because its constraints have tightened during query 
refinement. 

The current SRA attempts to compromise between the reach of the NLP techniques applied, and 
the need for responsiveness. As machines become more powerful, it becomes possible to 
attempt more sophisticated analysis.  In the short term, in work with Elizabeth Coppock, we are 
exploring applying semantic combination rules, in which the cooccurrence of specific patterns of 
logical interpretation in parts of an input query triggers the production of a correct (possibly 
different) representation of an overall situation, and the rejection of alternatives. In the longer 
term, we are exploring techniques for automatically learning logical interpretations of 
constructions, by reading (Curtis et al. 2009) 
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Fig. 12.  Semantic searching 

 

3.2.4.  Failing soft:  Semantic Search based on Cyc    

The above process does not always succeed,  e.g., when the data required to answer the query is 
still “locked up” in more or less unstructured form such as natural language texts.  This brings 
us to Challenge#5, semantic searching (versus just keyword searching) in cases where the 
correct answer cannot be calculated due to failure to understand the query, or due to missing 
structured data.  Our approach to this is similar to #1-4 at the internal SRA representation and 
algorithms level, but visually appears quite different to the user.  in Figure 12, semantic search is 
enabled for the paragraphs and pages of the annual “Outcomes” booklet issued by the 
cardiothoracic surgery division of the Cleveland Clinic.  The user, a prospective patient, types in 

(thereExists ?PATIENT 
  (and 
    (isa ?MEDICAL-EVALUATION-VIA-IMAGING Echocardiogram) 
    (patientTreated ?MEDICAL-EVALUATION-VIA-IMAGING 
?PATIENT))) 

(thereExists ?W 
  (and 
    (cCFLeftVentricleEjectionFraction ?X ?Y) 
    (patientTreated ?X ?W))) 

?W is disjoint with ?MEDICAL-EVALUATION-VIA-IMAGING ?X is 
disjoint with ?PATIENT 
?Y is disjoint with ?PATIENT 
?Y is disjoint with ?MEDICAL-EVALUATION-VIA-IMAGING 

     
 

?W is consistent with ?PATIENT  
?X is consistent with ?MEDICAL-EVALUATION-VIA-IMAGING 
 

Figure 11:  Inference based on (1) explicit type information (isa and genls) and (2) predicate arg. 
constraints determines how to combine new fragments to form a more complete query. 
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“heart attack”.  But the Outcomes booklet does not contain that colloquial term anywhere.  Even 
worse, the only places where those two terms do co-occur in proximity are on pages that are 
both irrelevant and frightening to the prospective patient (e.g., about heart-lung transplants.)  
Nevertheless, relevant “hits” are returned because the Cyc ontology knew that “heart attack” was 
a denotation for myocardial infarction, and the Cyc KB knew that CABG is a common treatment 
after MI’s, and because semantic tagging had identified which paragraphs and pages were about 
CABGs.  Similarly, semantic representations of MI’s, flesh eating bacteria, heart-lung 
transplants, etc., allowed it to not retrieve those irrelevant pages even though a string-based 
search engine would not have understood and would have included those false positives. 

If the user clicks on Gonzalez-Stawinski here, the system utilizes its partial understanding of the 
query, and of the retrieved pages, and displays not only the usual “page” about that surgeon,  but 
also an extra graph that does not normally appear “out of context” on that page but is very useful 
to a prospective patient. This graph, derived from the CCF data bases, shows the number of 
CABG procedures that surgeon has performed each year for the past decade.   

 
4. CONCLUSION AND NEXT STEPS 

 
Scaling up: SRA and, more broadly, the Cyc Analytic Environment CAE, are intended to serve 
as a bridge towards a future where our systems deeply understand the intent behind user 
queries, where our systems actively seek out and background knowledge and data that must be 
used to satisfy them.  We have experimented with the CAE, on which SRA is based, in the 
terrorism and financial domains, and believe that it is generally useful.  To realize the broadest 
benefit, though, it needs to be the case that 
nearly every query term will be understood by 
the system; part of this requirement is being met 
by initiatives such as linked open data, which is 
driving a great increase in the availability of 
data-grist for inference.  SKSI allows Cyc to make 
use of such data, and data in more conventional 
databases, during inference. 

But to support natural queries, the terms must be 
described in enough detail to allow their 
lexicalizations to be recognized, and their likely 
relations to other terms to be identified.  
Although the manual effort of building Cyc has 
been worthwhile, as a sort of “priming of the 
pump”, we now have interfaces that allow us to 
bootstrap from that knowledge in acquiring 
more.  The CURE (Content Understanding, 
Recognition, or Entry) interface, shown in Figure 
13,  allows concepts to be created, and fleshed out 

Fig. 13: This interface, CURE (Content Understanding, 
Review or Entry), allows non-logicians to enter know-
ledge by answering questions. As initial questions are 
answered in the form, inference based on their answers 
prompts additional questions.  
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with relevant assertions, by untrained users. CURETTE is a lightweight version of CURE that 
can easily be embedded in web pages.  In the longer term, the prospects for increasingly 
automated knowledge acquisition seem bright.  We have been working on automated rule 
learning over large conceptual  and relational vocabularies (Cabral et al. 2005, Curtis et al. 
2009), and are participating in the DARPA Machine Reading program, in support of this goal. 

The other key to broad applicability is simply having the inferential scale needed to support 
queries depending on very large rule sets applied to web scale data.  We have steadily increased 
the speed with which the Cyc inference engine operates, and the size of the KBs that it can 
handle, and are pursuing paths to even greater scalability through our participation in the EU 
LarKC research program (Fensel et al. 2008), which is attempting to build a platform (based on 
part of the Cyc source code) for web-scale inference. 

Within SRA, a clinical researcher should be able to explore novel hypotheses requiring logically 
or statistically combining information from multiple medical specialties; using SRA, a clinician 
should be able to state a cluster of potentially interrelated attributes and values for their patient, 
and ask about similar patients’ treatments and outcomes.   The natural way to investigate this 
will be by expanding the underlying ontology and KB to more and more domains (e.g., the next 
targets at CCF include  electrophysiology, interventional and diagnostic cardiac catheterization, 
heart failure and transplantation, and infectious disease.)  We wish to explore, as those domains 
are added, whether some of the components of SRA (e.g., the parser) “scale up” better or worse 
than others, and whether the SRA becomes qualitatively more useful by handling queries cutting 
across many departments and data bases.  
 
Even using tools like the CURE, domain scaling requires considerable but tolerable effort; 
consider cardiac catheterization (“cath”).  Even though at CCF there are separate departments 
and separate data bases for diagnostic cath and interventional cath, there is sufficient overlap in 
concepts and terminology that they may be treated as one domain for SRA purposes.  The 
approximately 500 new concepts and 6500 new assertions which are currently being added, for 
this domain, include knowledge about types of catheters and attachments, associated devices 
such as those for stemming post-removal blood loss, common procedures and their sub-steps 
(down to the level of ordering and other constraints among the sub-steps of a procedure), 
diagnostic rules, relevant anatomy, diseases, medications, indications and contra-indications, 
and heuristics (rules of good judgment) about degrees of risk and likelihood of outcomes.  About 
half of the 6500 new assertions for this domain are lexical assertions, expressing the various 
ways each of the 500 new concepts is denoted in “medical English”  and tying it to standards 
including Snomed and ICD-9 and -10, along with more traditional linguistic assertions 
indicating for example whether each noun is a count noun or mass noun.  The other half of the 
6500 represent pieces medical knowledge about cath, assertions involving one or more of the 
500 new terms and, in almost all cases, also involving one or more of the preexisting 500,000 
concepts in the Cyc ontology, partially defining those new concepts and integrating them into 
the existing ontology. 
 
The initial acquisition of concepts, terminological assertions, and medical knowledge assertions 
for each domain is done top-down.  E.g., for cardiac catheterization, the first step was to use 
(Kern 2004) as a reference.  The next “pass” after that, which is currently underway, is to 
expand the ontology and the KB as needed by looking at a representative sample of clinical 
research and clinical queries involving terms from that domain.  Many of the former can be 
harvested automatically from websites such as clinicaltrials.gov, and some of both types can be 
retrieved from logs of recent manually-translated-into-database-form queries.   
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(implies                                                
(and 
      (cCFhasLeftAtriumDiameter  ?EVT  ?D) 
      (greaterThan  ?D  ((Centi  Meter)  3.8)) 
      (patientTreated  ?EVT  ?PAT) 
      (patientSex  ?PAT  FemaleHuman) 
      (rdf-type  ?EVT  ?TYPE) 
      (genls  ?TYPE  CCF-Evaluation)) 
   (isa  ?EVT  EvaluationThatIndicates- 
          LeftAtrialEnlargement)) 

Figure 14. A typical domain assertion added to SRA.  

 
Smarter Data Entry:  Patients who are admitted to multiple departments at a medical center 
often are asked the same or related questions (e.g., about family history) repetitively.  By 
installing the SRA “behind” the data acquisition screens, some of this can be avoided.  Some 
such data can be inferred unambiguously from already-entered data about that patient; in other 
cases, the range of possible answers can at least be constrained (resulting in, e.g., a small(er) 
menu of choices).  When contradictory information inevitably is added, about a patient, there is 
at least the possibility of recognizing it in real time – deducing that there is a logical conflict -- 
and flagging it.  And when there are multiple “blanks” yet to be filled in, instead of providing no 
guidance (or, even worse, locking the data enterer into a fixed sequence of queries to respond 
to), the system could infer and highlight the queries that would be “best” to answer next.  In this 
case “best” includes an information-theoretic component (answering this query next is likely to 
constrain many other as-yet-unasked queries), an outcomes component (answering this query 
next might turn out to be vital to providing this patient’s urgent care), a cognitive load 
component (don’t “jump around” changing contexts more than necessary), and other heuristics 
no doubt apply. 
 
Clinical Use: Although the SRA has been developed in the context of cohort-selection for 
clinical outcome studies, the current push towards standardized electronic patient records 
suggests an even more powerful future use: directly data-driven clinical practice, in which 
treatment outcome predictions for a particular patient are dynamically produced by analysis of 
the outcomes of the most similar other patients.    The SRA would be used to query about 
individual cases; e.g.: “This patient has had elevated creatinine levels since their mitral valve 
repair and has a history of renal failure.  What have been the recommended treatments over the 
past five years for patients with these conditions?"  The same kinds of data base queries would 
be generated, but instead of a cohort of patients being returned, sets of treatment options and 
outcomes would be retrieved and statistically analyzed. 
 
Relating qualitative and quantitative 
terms:  Often, part of the “full 
understanding” of the user’s query means 
interpreting qualitative terms like “small”, 
“minor”,  “enlarged”,  “significant”, “unusual”, 
etc.   While relative terms such as these can 
be expressed in Cyc, often the physician 
“really” has some more precise meaning in 
mind.  E.g., Figure 14 shows an assertion 
recently added to SRA (i.e., to the Cyc KB), 
expressing in predicate calculus a criterion 
for left atrial enlargement in women: in 
working with the physicians to articulate this 
and express it sufficiently rigorously in CycL, 
it turned out that what they meant – in their 
domain – was: having an atrial diameter exceeding 3.8 cm.   
 
More deeply infer what the user plausibly intended by their query:   The goal is to 
steadily reduce and eliminate the need for human intermediaries “in the loop”, and to reduce 
and eliminate the need to ask the physician any follow-up clarifying questions.  This is an 
iterative process, incrementally approaching competence by training the system on a large 
corpus of examples.  The existing CCF library of over 1000 intermediary-processed queries 
forms a natural starting point for this corpus.  Augmenting this are tens of thousands of others 
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from various domains on www.clinicaltrials.gov.  To expand the corpus, clinical researchers 
should produce alternate versions of each query, providing a number of different plausible 
syntactic forms and wordings for the same semantic query.   
 
At present, the SRA system uses three sources of information to establish meaning: syntax, 
statistics, and background knowledge.  All three could be utilized even more than they currently 
are.  Syntactically, we can expand detailed parsing from its current application to identifying 
relations and argument, and deep understanding of time expressions to cover correct 
assignment of the roles in a syntactic frame, and to analyzing the internal structure of novel 
noun phrases.  This should significantly reduce the number of candidate frames.  In statistics, 
we hope to extend the trained filtering that currently identifies plausible senses of terms given 
the topic to jointly maximize the probability of an interpretation over multiple ambiguous query 
terms.  We will train a probabilistic model of modifier attachment, to allow more “query 
fragments” to be automatically assembled.  Finally, regarding background knowledge, we plan 
to write new disambiguation and “fragment” addition rules, and tighten the logical constraints 
on arguments of logical relations, to enable more effective use of the knowledge added for 
interpretation. 
 
Part of the source of power being tapped by SRA is the fortuitous fact that natural language 
understanding for detailed queries, even quite long queries, can – at least in the medical 
domains explored to date – be performed in a largely compositional fashion, recursively 
constructing  and refining pieces of the overall query, rather than having to reason very much 
about the query as a whole.  Only once the query is mostly understood, and few ambiguities 
remain, is it practical to reason about “far apart” pieces of the query to see whether medical 
knowledge, discourse pragmatics, or data in the target DBs can point to a resolution.   
 
Synthesizing a terser yet more comprehensible answer for the user.   Condensing, 
formatting, and exporting the answers  to a user’s query sounds like a “frill”, compared to the 
task of actually getting the correct answers to their question.   So we were surprised to find that 
empirically this has been one of the biggest factors affecting whether and to what extent 
physicians directly use the SRA.   
 
The first and easiest “side” of this task to focus on will be getting SRA to intelligently pare down 
the answers, and especially the justifications for the answers, removing as much prior and tacit 
knowledge as possible.  SRA will do this by drawing on much the same knowledge used in 
understanding the queries and in formulating a plan to retrieve elements of data from which to 
answer the query.   Producing a clear answer or justification has syntactic features (combining n 
attributes of a procedure into a single descriptive noun phrase), trainable probabilistic features,  
and background knowledge.  But besides general knowledge and medical knowledge, success at 
this task will depend on building up and using a powerful explicit model of the user – e.g., what 
do they know and not know; what sorts of details do they like and not like to see included; what 
queries have they recently asked of the system; what is their purpose in asking this query?  
Consider e.g.  the last of those variables, their purpose: even at a very broad level, if they have a 
clinical research purpose in asking the query, the sort of answers, time frame for the answers, 
etc., is quite different than if they are a clinician asking about a particular patient.  This notion of 
the user’s context is represented explicitly in Cyc, and thus can be easily represented in SRA.  
Experimental approaches for using explicit user and task models that were developed for 
intelligence analysis (in the Cyc Analytic Environment, CAE, on which the SRA was initially 
based) will be applied and extended to the medical domain.  The important user and task 
attributes, and the rules associated with each one, will be captured in post-usage debriefing 
sessions.  User modeling research indicates that even relatively small user models and context 
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models are sufficient for establishing enough details of to sustain a high degree of user comfort 
with question-answering programs.  In particular, we expect this to lead to very few new 
concepts being added to the ontology, but to a large number of rules being added relating user 
variables (and variables about the context in which the user is currently interacting with the 
system) to display modality, location, priority, format, and editing choices. 
 
Extending the current Semantic Searching capability:  There are two methods by which 
Cyc-based semantic searching is performed.  The “strong” version is to partially parse a large 
corpus of text documents, much as SRA partially parses users’ queries.  This leads to an 
identification of what that document (and that paragraph in that document) is about, the 
ontological terms – individual objects, collection, predicates and relations – and some of the 
fragment-like clauses (predicates applied to arguments, sometimes with some of the arguments 
being left as quantified variables).  By partially parsing the user’s query, Cyc can then perform 
inference to find connections (and their semantic strength) between the query and each 
document  in the tagged corpus, or even each paragraph. 
 
The second, “weak” version of semantic searching involves taking the English paraphrase of the 
query, to the extent available, or the initially typed query, to the extent the paraphrasing failed, 
and then   augmenting the query with “OR” clauses – disjoining Boolean terms – based on their 
being alternative ways of denoting the same terms or very close “relatives” in the ontology, and 
augmenting the query with conjoined “AND NOT” clauses where there are different, unintended 
denotations for some of those very same words and phrases, in each case finding some very 
close “relatives” of those unintended concepts (“betrayers”)  so that any false negative page 
found for the term is likely to contain one or more of those betrayers.  In a query like 
“Rhinoplasties performed in TX or MI during 1991”, “MI” refers to Michigan, so synonyms of 
“myocardial infarction” would be the AND-NOT terms augmenting the query before handing it 
to Google or PubMed.   
 
Unlike the other SRA extensions we have just described, this one may succeed or fail based more 
on the algorithms developed for it.  For example, one possible algorithm would be to generate 
alternate paraphrases of the query, find “hits” for each paraphrase, and upgrade “hits” that 
turned up for multiple paraphrases. 
 
One of the factors we do not yet have much in the way of preliminary results about, is the extent 
and way in which the clinical researcher and the clinician will make use of this capability, and 
that will be one of the things we hope to discover empirically.  We already described how one use 
of Semantic Searching is as a fallback: the user will still likely want  to see pointers to e.g.  
relevant recent literature even in cases where SRA can answer their query.  Seeing such articles 
may be of value to them in more rapidly converging on the queries they most want to ask, 
queries which in some cases will be answerable by SRA. 
 
Final Conclusion: We have made progress in getting SRA to answer physicians’ ad hoc 
queries about patient data orders of magnitude faster than what had been “best practices”, but 
there is much room for, and many different directions for, future improvement and wider 
application.  As was the case with search engines, once the process of formal ad hoc query 
articulation via clarification dialogue is sufficiently fast and easy to use, and incorporates 
appropriate privacy controls, the general public may become the heaviest users, leading to a 
qualitative change in the way that patterns are first detected in patient data, and to a qualitative 
improvement in patient informedness, involvement, satisfaction, and outcomes. 
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