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Abstract. If we are to understand human-level intelligence, we need to
understand how meanings can be learned without explicit instruction.
I take a step toward that understanding by showing how symbols can
emerge from a system that looks for regularity in the experiences of its
visual and proprioceptive sensory systems. More specifically, the imple-
mented system builds descriptions up from low-level perceptual informa-
tion and, without supervision, discovers regularities in that information.
Then, the system, with supervision, associates the regularity with sym-
bolic tags. Experiments conducted with the implementation shows that
it successfully learns symbols corresponding to blocks in a simple 2D
blocks world, and learns to associate the position of its eye with the
position of its arm.

In the course of this work, I propose a model of an adaptive knowledge
representation scheme that is intrinsic to the model and not parasitic on
meanings captured in some external system, such as the head of a human
investigator.

1 Introduction

In 1998, a group of MIT AI Lab faculty came together to form The Human
Intelligence Enterprise, a group committed to the pursuit of understanding hu-
man intelligence from a computational perspective. From this group, the Bridge
Project was initiated to investigate an interface between language representation
and visual representation. The Genesis group, the name of the student group
spawned by the Human Intelligence Enterprise to work on the Bridge Project,
took an approach to investigating human intelligence that is very timely: to
investigate the processes and representations that contribute to general human-
level intelligence.

Inspired by this pursuit, I have asked the following questions: 1) How can
we design representations for intelligent systems that bridge the gap between
symbols and their subsymbolic referents, also known as the Symbol Grounding
Problem? (Harnad 1990) 2) How can we design representations that are not
limited to learning only within specific domains? This paper takes a step toward
answering those questions.



Taking inspirations from the cerebral cortex and drawing from some older
technologies (Kohonen’s self-organizing maps, clustering algorithms, Hebbian
association), I have fashioned a model that puts these elements together in a
new way to form a self-organizing representation capable of representing the
statistically salient features of an information space. The model can be used to
train a system to associate the movement of its arm with the movement of its
eye, as well as to associate colored blocks with linguistic symbols representing
utterances.

2 Related Work

(Agre and Chapman 1987) investigated the instantiation of general symbols us-
ing indexical-functional aspects. Aspects were intended to provide a meaning
for objects in a world relative to their usefulness for an agent. (Drescher 1991)
looked at how a system can build knowledge on top of knowledge through inter-
action in a simple micro-world with a hand, an eye, and objects. The system in
(Beule, Looveren, and Zuidema 2002) is given information about objects such as
their positions and their constituent properties and returns syntactic structures
describing notable objects in a world such as “the red square moving to the
right”. (Roy et al. 2003) describes a physically instantiated robot arm that can
pick up objects by associating sensorimotor primitives together.

What the model of Intrinsic Representation shares with the previous works
is the desire to associate symbols with subsymbolic descriptions. The following
points outline the ways in which the model differs from the approach of tradi-
tional symbol systems. The same points explain the features of the model not
shared by the previous works.

Symbols’ descriptions are discovered from the statistical processing of experience.
In almost every traditional symbol system, the symbols and their descriptions
must be provided before-hand. In the model of Intrinsic Representation, the
descriptions of symbols are discovered by processing sensory data in an unsu-
pervised manner.

Symbols’ descriptions are equivalent to statistical regularities found in informa-
tion spaces. The nature of the symbols in traditional symbol systems are as tags
whose descriptions are provided by a human designer. Descriptions formed from
statistical regularities do not have to be provided by a human designer. As a
result, symbols will represent certain classes of things in the world not because
a designer finds them useful, but because those things are the most statistically
salient in the given information space.

Symbols’ descriptions carry their context with them by being situated in informa-
tion spaces. Traditional symbol systems require context as an extra parameter
to make sense of a symbol. In such systems, symbols may mean different things
in different contexts. This is because a symbol is thought to be a separable part



of a system rather than an intrinsic part of a system. Because symbols within
an Intrinsic Representation are derived from information spaces they are inex-
tricably linked to them and carry no separate meaning. For example, a cluster
in an information space of visual information cannot be transported into an in-
formation space of any other kind of information, its data would not make sense
in a different context. As a result, you cannot have a symbol that is not bound
to its context.

3 Moving Forward

Representation has been at the center of the field of Artificial Intelligence from
its inception. Formal symbolic systems capitalized on the ability to store in-
formation about the world in computer memory. The great successes of this
approach, chess-playing computers and expert systems to name a few, relied on
AT researchers’ ability to invent ways of cleverly modeling the outside world.

On the other side of the tracks, the parallel distributed processing approach
paved the way for a different approach to representation (Rumelhart and Mc-
Clelland 1986). Rather than symbols, the values stored in the hidden nodes of
pattern-analyzing networks provided a new perspective on what a representation
could be. A great emphasis was placed on the learning of patterns. The ability
for a network to produce the appropriate input-output behavior was taken as
the proof that the representation formed by the hidden nodes was appropriate.

The rise of nouveau Al and the pursuit of insect-like intelligent robots ushered
in an era that sought to dismiss internal representations, opting instead for using
the world as its own best representation (Brooks 1991). The early success of this
approach demonstrated a third perspective of representation that turned the
classical view on its head.

The proper recognition of representation as the cornerstone of Artificial In-
telligence helps put the road ahead into greater focus. As we understand more
about the brain we gain an increased appreciation for the hard problem of repre-
sentation that evolution has had to solve. This is the problem of the appropriate
organization of information, a problem common to both organisms and man-
made intelligent systems. While some might be hesitant to label the recognition
of stimuli by simple animals as representation (as Brooks might), T would re-
spond that there is much profit to be gained from broadening the definition.
Doing so immediately leads us to the conclusion that simple organisms provide
us with “page one” of the evolutionary history of representation. Our simpler
evolutionary ancestors did not have the luxury of high-level concepts as humans
do to help them craft clever taxonomies. Their only view of the world were the
low-level patterns of activation they received from arrays of sensor cells. How can
we model the processes that enabled them to distinguish food from poison and
mate from attacker? For such simple creatures, we must boil the definition of
representation down to its most basic and pure: representation is about grouping
similar things together and placing dissimilar things farther apart.



From this viewpoint, it becomes clear that the two strategies of constructing
representations, man-made and evolutionary, differ in an important way. The
groupings of man-made representations are based on human choice of what is
similar and what is dissimilar. The sensory groupings created by the nervous
systems of simple organisms are certainly not. But what, if not the design of a
creator, could be responsible for the appropriate groupings of stimuli that simple
organisms exhibit?

In order to answer that question, we are forced to speak the language of the
neuron— statistics and information theory. Biological systems have some help
in making sense of the world from its sensory information: the world is not
filled with Gaussian white noise. Natural environments contain patterns that
are identifiable after the right processing has been carried out.

The information that an organism receives from its sensor cells can be thought
of as forming a high-dimensional vector space of information, or “information
space” (Larson 2003). For each organism, it is most advantageous to be able
to process and react to sensory data within the those subspaces most relevant
to survival. Seen from this angle we might explain the emergence of biological
representation as the result of the natural selection of those organisms best able
to model those subspaces.

If this is indeed the strategy that Mother Nature has exploited to enable
simple organisms with the ability to represent the world, could we follow in her
footsteps? Could a representation be built up from low-level sensory information
by making statistical distinctions between similar and dissimilar input? Could
such a representation self-organize from the statistical regularity of its input the
ability to tell the difference between sensory patterns rather than relying on a
magic “if” statement which, in turn, relies on human-designed assumptions of
similarity? Such a representation is the goal of the model of Intrinsic Represen-
tation.

4 The Model

Figure 1 is the key diagram for understanding the model of Intrinsic Represen-
tation. Two information spaces, i and j, are shown side by side. At the bottom
of the diagram, sensor arrays receive streams of data from the outside world.
Such arrays could be imagined as a patch of skin or light-sensitive cells in the
retina. As data comes into the system through these sensors, they travel to a
subsystem devoted to organizing and storing the regularities in the data. This
subsystem arranges these regularities with respect to their similarity, placing
similar regularities in proximity, and dissimilar regularities farther apart. After
a critical period, the regularities are grouped into clusters of high similarity. Once
grouped, a cluster gains the ability to act as a unit that can be activated and
deactivated. Data in the incoming stream can be treated as the trigger for the
activation of the cluster of which they are a member. As clusters are activated
by incoming data, they are associated together by their frequency of coincidence.
The more often two clusters are active simultaneously, the more associated they
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Fig. 1. The model of intrinsic representation.

will become. The resulting trained system treats incoming patterns as members
of a class, and can react to the activation of that class.

4.1 Architecture and Implementation

This section discusses the architecture and the implementation of a computer
program demonstrating the model of Intrinsic Representation.
The architecture of the program is divided into four major areas:

1. A Blocks World Simulation
2. A Self Organizing Map

3. A Cluster Set

4. Cluster Associations

Each of these blocks feeds into the next in succession. Data flows into the
system from a simple 2D blocks world that provides an environment for the
present system. In the blocks world, there is an arm with a simple grip useful
for grasping objects, much like the arcade novelty that invites players to catch
prizes by controlling a robot arm. There is also an eye, whose focus is represented
by a square that moves around the environment. The eye and the arm are the
sources of sensory and motor interaction with the world. There are also blocks
in the world that can be picked up and stacked on top of one another. Simple
physics modeling enables such constraints as gravity and friction.

Both the eye and the arm are equipped with sensors. Every sensor is nor-
malized, and thus reads a real value between zero and one. The eye has retina
sensors arranged in a 2D array that register the red-green-blue value of any spot



they are over. The eye also has sensors that report its horizontal and vertical
orientation, mimicking the information the brain receives from the muscles that
position the eyes.

The arm has proprioceptive sensors and tactile sensors on its grip. The pro-
prioceptive sensors report how far it is extended both horizontally and vertically,
mimicking feedback from muscles and joints. The tactile sensors report collisions
with objects. A vector of sensor values is read from the eye and arm each time
their values change (see figure 2).

As data are output from a given device, they are received by a self-organizing
map (Kohonen 2001). For the experiments conducted, two self-organizing maps
are used; one for the eye and one for the arm. The map is specialized to its
input only in the respect that its dimensionality must match. As vectors are
received, the map’s self-organizing process iterates following a growing Kohonen
map algorithm (Dittenbach, Merkl, and Rauber 2000).

The maps undergo a self-organizing process that is driven by the visual or
proprioceptive information that they are set to receive. The maps are allowed
to self-organize and are later prevented from acquiring new data (see figure 3).
At this point, a clustering algorithm is used on the data held by the map to
separate the major clusters in the space. This is visually represented as finding
the discrete sets on the map which correspond to the groupings of the most
similar cells (see figure 4).

Once clusters have been established, each of the clusters on the map is given
its own unique identifier, and a new data object is created to represent it. This
data object keeps track of the similarity measure of the cells inside the cluster,
as well as the indices of the cells it contains.

This data object also keeps track of any associations that a cluster has made
with other clusters, even those outside of the current map. In this sense, the
cluster acts like a single unit whose activation can become associated with the
activation of other units. The association process is a simplified version of Heb-
bian learning. When clusters are activated by sensory data simultaneously, a
counter labeled with the names of those clusters is incremented. Clusters are
active when input matches most closely with a cell within the cluster. The clus-
ter association system identifies the clusters most associated with any particular
cluster. Clusters are never associated with clusters from the same map.

Once the system has been trained, the associations can be used to activate
units between modalities. This allows it to exhibit behavior that neither modality
separately would be able to accomplish as easily by itself.

4.2 Three Levels of Representations

The architecture I have just described takes advantage of three different levels
of representation arranged in a hierarchy. The following describes these repre-
sentations in greater detail.

Map Cells A map cell is a single cell in a self-organizing map. Each cell keeps
track of a subset of information that enters from the environment during the ini-



tial self-organizing process. Each cell in the map stores an n-dimensional vector.
The data contained in that vector corresponds to a point in an n-dimensional
information space. In the context of a self-organizing map, a map cell represents
a point in an n-dimensional information space that is representative of a class
of points that the map has observed.

Clusters The cluster is one representational level higher than a map cell. It is
a collection of statistically similar map cells in a self-organizing map. Because
cells represent vectors in an n-dimensional information space, a cluster therefore
is a collection of statistically similar vectors.

In the context of a self-organizing map, a cluster represents a collection of
cells that have been arranged near each other by the SOM process (Kohonen
2001). The SOM process also arranges cells such that dissimilar cells are distant
in the space. As a result, the cells inside a cluster are similar to each other, but
different from other major clusters in the map.

Putting this together with what we know about a map cell, a cluster repre-
sents a subspace of an n-dimensional information space by storing a collection
of n-dimensional vectors. While these vectors are not a basis for that subspace
as in linear algebra, they are a collection of statistically interesting vectors that
are representative of a class of points in that subspace.

Associations/Symbols Associations are a representational level higher than clus-
ters. In general, they represent a collection of clusters, usually two. They are
discovered between different maps through the process of Hebbian learning. This
creates connections between clusters that are active simultaneously in different
maps.

5 Experiments

Learning About Blocks In this section I demonstrate how the system learns
about blocks in a simple 2D blocks world at all three of the representational
levels just described. In a nutshell, the system discovers implicit representations
of blocks in its world in an unsupervised manner. Then it assigns explicit symbols
to those implicit representations in a supervised manner.

The first experiment involves two self-organizing maps that read data from
a blocks world. One map reads data from the eye in the blocks world, and the
other map reads data from the arm. Figure 2 illustrates the features that make
up the input data vectors.

Additionally, there is a third fixed map that contains linguistic symbols that
both the eye map and the arm map are allowed to associate with. This linguistic
symbols map is artificially manipulated by the experiment to act as supervisor.
When the eye or the arm come in contact with a block of a particular color, this
linguistic symbols map will activate a cluster that corresponds to the appropriate
symbol, in an attempt to model a distinguishable utterance identifying the block.
The task before the learner, then, is to build up a representation that matches
the correct utterances with the things it sees and feels in the world.
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Fig. 2. A guide to the features stored in the visual and arm data vectors that arrive at
the eye map and the arm map respectively. The visual data includes x and y coordinates
for the eye position, followed by r, g, and b which store the red, green and blue values
for each pixel position in the eye. The arm data includes h, v, and g which store the
horizontal and vertical components, the width of the grip, and 6 sensor values that are
read from sensors on the gripper/hand.

Training The Maps First, the eye map is trained on the objects in the scene
separately. To accomplish this, the eye is shifted between the objects in the
scene several times. The scene consists of a red, a green, and a blue block, plus
the arm. While viewing a single object, the eye is allowed to scan by taking a
circular path around it. As the eye moves from object to object, the eye map
grows to capture more of the views it is receiving. Figure 3 illustrates the progress
of the eye map in this phase of training. The result of this process is a map that
captures views of the objects in the scene.

Once the eye map has been trained with the stationary objects, the arm is
trained on the blocks in the scene by being moved to each block in succession,
grasping it, picking it up, moving it around, lifting it up, and eventually dropping
it. The result of this process is shown in figure 5 and illustrates a distinction
between the arm with something in its grasp, and the arm without something
in its grasp.

While the arm is being trained, the eye is focused on the actions of the arm,
thus updating the eye map to include the interactions between the arm and the
blocks. Figure 4 illustrates the resulting map.

Clusters Following the training of the maps, Figure 4 shows the eye map seg-
mented into clusters, and figure 5 shows the arm map segmented into clusters.

Associations Once the maps have been segmented into clusters, their clusters are
associated together. The training process is a repetition of the arm training—the
arm travels to each block, grips it, picks it up, and moves it around, while the
eye looks on.

During this training phase, both maps are given the opportunity to form
associations with the special utterance map, which contains symbols that are
activated or deactivated during training. When the eye and the arm are inter-
acting with a block, the appropriate symbol is activated. When the eye and
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Fig. 3. A visual representation of the eye map partially trained on the four objects in
the simple 2D blocks world. Each cell is a bitmap representation of the rgb values of
underlying visual input data vectors. In the bottom left, the map shows a few views
of the blue block. In the bottom right several cells show views of the red block. In the
upper right, middle and center, several views of the gripper/hand can be seen. The
cells along the upper and middle left show views of the green block. The “smeared”
cells are the product of different inputs that came soon after one another and thus
created cells that are on a cluster border.

the arm leave the area of the blocks, no symbols are asserted. The symbols are
(Red Block), (Blue Block), and (Green_Block). These symbols are undivided;
while to us they imply a combination between a color and a shape to a human
reader, to the system, they are only treated as distinguishable atomic tags. This
is consistent with the notion that symbols by themselves are just tags until
associated with sub-symbolic meaning.

The left half of table 1 shows the results of the association between these
symbols and the clusters in the eye map. Higher frequency corresponds to greater
association between the symbol and the cluster. The cluster IDs are the same as
the cluster IDs in figure 4 to provide the reader a sense of the clusters that the
symbols are being associated with. The right half of table 1 shows corresponding
results for association between the symbols and the clusters in the arm map.
These cluster IDs correspond to the ones in figure 5.

Generally, the associations tend to fall into the largest clusters that, to the
eye, appear to be the most representative of the block in the symbol. In this case,
however, table 1 shows that the symbol (Blue Block) is instead most associated
with a smaller cluster, though the largest cluster corresponding to the symbol
(Blue Block) appears farther down on its list. This demonstrates how even
small clusters can represent important parts of the information space.

One of the interesting results of table 1 is that the (Blue Block) symbol and
the (Green Block) symbol are both most highly associated with cluster 166.
This cluster corresponds to a state where the arm is gripping something. The
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Fig. 4. A trained eye map with clusters overlaid. Here, the images visually represent
the values that the arm sensors can take on. The cluster IDs of relevant clusters are
highlighted.

Table 1. The major associations between symbols and clusters in the eye map and the
arm map

Eye Map |Frequency||Arm Map |Frequency
SYMBOL Cluster ID Cluster 1D
(Red_Block) |[645 69 173 78

169 35

(Blue_Block) |686 35 166 63

661 24 165 22

638 10 170 14
(Green_Block)|651 80 166 100

680 26 168 10

636 23

719 20
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Fig. 5. A trained arm map with clusters overlaid. The cluster IDs of relevant clusters
are highlighted.

associations further down the list, which match to different clusters, dissociate
the two symbols so that they can be independently identified.

This experiment demonstrates the ability of the system to ground symbols
in sensory data. The system has acquired sensory data and organized them
into classes in an unsupervised fashion. Later, this data was associated with
symbols in a supervised fashion. Thus, the symbolic information stored in the
special utterance map has been grounded by the subsymbolic data from the
environment.

Associating Hand with Eye In this section I demonstrate how the system
can use associations formed between the position of the eye and the position of
the arm to enable the arm to move to the current position of the eye.

The training of the eye map and the arm map follows a simpler process than
in the previous blocks-learning situation. There is no third map whose activity
is managed by the experimenter. In this experiment, the two maps are allowed
to associate directly with one another. Training proceeds by fixing the position
of the eye to that of the gripper/hand, and moving them together to random
points in the space. The space does not have any blocks into it.

What we expect from this training is for the eye map to have stored very
similar images since it views the same part of the gripper for all time. Because
of this, the x and y components of the eye data should become more significant.
The resulting eye map should have an even distribution of x and y positions
across it. The arm map will emphasize the horizontal and vertical components
as they are the only ones that are varied.

Figure 6 shows the trained eye map after the clustering process has run.
Notable clusters are highlighted. Our expectation of a smooth and continuous
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map of x and y values has been met. Figure 7 shows the trained arm map after
the clustering process has run, with notable clusters highlighted. Table 2 shows
the data from the cluster associations.
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Fig. 6. A trained eye map with clusters overlaid. Relevant clusters are highlighted. All
the cells show closely similar views of the world, but the x and y components vary
across the map.

These associations allow the arm to move into a region near the eye’s view.
To accomplish this, the currently active cluster in the eye map is identified using
the current state of the eye (see figure 8). Then, the arm cluster most highly
associated with the currently active eye cluster is selected from the arm map.
The vectors from the cells within this cluster are averaged together, and the
arm is driven toward this average vector. A feedback process is used whereby
the arm continues to move in the direction of the average vector so long as its
current state vector does not match it. Note that while this experiment focused
on moving the arm to the eye, the inverse could also be accomplished with the
same trained maps by simply reversing the process just described.

This experiment demonstrates a deeper use of the model of Intrinsic Rep-
resentation; to enable action. Through an unsupervised process, the different
coordinate systems of the eye and the arm are trained to be compatible, and to
allow one to “speak the same language” as the other.

This experiment also shows how exchanges can be made between sensory
systems without involving any linguistic symbols whatsoever. This observation
expands what we mean by a symbol. The experiment demonstrates the equiva-
lence of 1) associations made with clusters that store linguistic symbols and 2)
associations made with clusters that store other kinds of sensory data. Of course,
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Fig. 7. A trained arm map with clusters overlaid. Relevant clusters are highlighted.
While the gripper sensors and grasp remain constant, the map self-organizes using the

horizontal and vertical components of the data alone.

Table 2. Associations between the eye map and the arm map.

Eye Map |Arm Map |Frequency||Eye Map |[Arm Map |Frequency
Cluster ID|Cluster ID Cluster ID|Cluster ID
1663 2177 152 1663 2186 49
1663 2154 140 1663 2176 45
1663 2164 136 1663 2182 45
1663 2153 127 1664 2153 27
1663 2181 125 1664 2181 24
1663 2196 125 1664 2152 20
1663 2169 101 1664 2187 20
1663 2152 92 1665 2196 20
1663 2156 81 1665 2164 19
1663 2155 78 1665 2181 15
1663 2166 72 1665 2153 15
1663 2187 63 1666 2177 36
1663 2163 58 1666 2154 33
1663 2180 57 1666 2181 29
1663 2167 56 1666 2180 19
1663 2157 55 1672 2196 17
1663 2165 52
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Fig. 8. A schematic showing how a trained representation can give rise to behavior.
The self-organizing map and cluster set on the left store sensory information from
the eye, while on the right they store sensory information from the arm. Starting at
the blocks world at the bottom, we see that when the eye looks at a location, that
information matches a cell in the eye map. This activates a cluster of cells in the eye’s
cluster set. The eye cluster set has been associated with the arm cluster set, and thus,
a cluster in the arm map is activated. The average value of the cells in that cluster is
outputted to the arm, causing it to move to a location.

in the brain, linguistic symbols are just another kind of sensory data, so this is
just as it should be.

6 Contributions

In this paper, I have:

1. Outlined the differences between Intrinsic Representation and other ap-
proaches to the Symbol Grounding Problem.

2. Justified the need to pursue self-organizing representations as an attempt to
recapitulate the evolution of biological representations.

3. Elucidated a hierarchical, self-organizing representational system called In-
trinsic Representation that acquires symbols in an unsupervised manner by
extracting statistically salient information through interaction with its envi-
ronment.

4. Described the architecture of Intrinsic Representation through its three key
levels of representation: the map cell, the cluster, and the association.

5. Provided the results of two experiments carried out using this representa-
tional system instantiated in a computer program.
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