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Abstract

The cognitive process of analogical reasoning has generally been thought to occur in at least three stages:
retrieval of a source description from memory, mapping of that source description to the target description,
and transfer of relationships from source to target. Here we are concerned with the first stage, the retrieval
of relevant sources from long-term memory for their use in analogical reasoning. Specifically we ask: what
can people retrieve from long-term memory when stimulated by a description of some situation, and how do
they do it?

Psychological experiments suggest that subjects display two sorts of retrieval patterns: a novice pattern
and an expert pattern. Those subjects that show the novice pattern are much more likely to retrieve so-called
merely-apparently-similar sources to a target description rather than analogically-related sources. Merely-
apparently-similar sources for a target are characterized by the two descriptions sharing superficial features,
such as the types or identities of objects or actors involved, whereas in an analogical relationship the source
and target share description structure that is useful for making analogical inferences. In contrast to those
who show the novice pattern, those subjects who show the expert pattern are much more likely to retrieve
analogically-related sources to a target stimulus, as long as the target and sources fall into a domain in which
the subject can be considered an expert.

Previous models of the analogical retrieval process (e.g., MAC/FAC or ARCS) have only successfully
modelled a single type of retrieval, either novice-like or almost novice-like. We introduce a model that can
demonstrate both a novice-like and expert-like mode of retrieval using the same mechanism. The salient
difference between the two modes is the average size of the features that are used to identify relevant sources
in memory. Drawing on an intuition from the work of Ullman and co-workers on the use of features in visual
classification, we hypothesize that features of an intermediate size will be most useful for retrieval. The
intuition is that small features are found everywhere, leading to many false positives, whereas large features
are found nearly nowhere, leading to many false negatives, and it is only features of an intermediate size
that are common enough but also unique enough to be useful.

We conducted two computational experiments on a dataset of our own construction which showed that
our model gives the strongest analogical retrieval, and is most expert-like, when it uses only features of an
intermediate size. We conducted a third computational experiment on the Karla the Hawk dataset which
showed a modest effect consistent with our predictions. Because our model and Ullman’s work both rely
on intermediate features to perform recognition-like tasks, we take both as supporting instances of what we
call the Goldilocks hypothesis: that on the average those features that are maximally useful for recognition
are neither too small nor too large, neither too simple nor too complex, but rather are in the middle, of
intermediate size and complexity.

Keywords: Analogy; analogical access; precedent retrieval; intermediate features; symbolic computational
modelling.
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1 Introduction & Background

We concern ourselves in this paper with an essential step in the analogical reasoning process, the retrieval
of relevant precedents from long-term memory (French, 2002; Hall, 1989). That is, when stimulated by a
description of some situation, what situations can people retrieve from long-term memory, and how do they
do it?

The current understanding of analogy is framed by the Structure-Mapping Theory (Gentner, 1983; Falken-
hainer, Forbus, & Gentner, 1986), which takes as one of its fundamental points that shared structure is
necessary to make an analogy between two descriptions. Despite this emphasis on structure in analogy
generally, psychological studies of analogical retrieval indicate that it is difficult for most people to recall
structurally-related descriptions that would be useful in analogical reasoning (Gick & Holyoak, 1980; Ratter-
mann & Gentner, 1987); rather, they retrieve descriptions that share primarily superficial features, such as
object or actor identity. Experiments have repeatedly emphasized the predominance of this so-called “mere-
appearance” retrieval over analogical or structural retrieval, and models to date have attempted to account
for this effect computationally. In contrast, results from the field of expert problem solving suggest that
certain sorts of people can consistently achieve structural recall (Chi, Feltovich, & Glaser, 1981; Schoenfeld
& Herrmann, 1982; Shneiderman, 1977). While these people often fall under the heading “expert” for the
domain in question, novices are also often able to attain structural reminding under particular circumstances
(Holyoak & Koh, 1987; Wharton et al., 1994).

Current models of retrieval do not account for the drastic differences between novice-like and expert-like
retrieval (Thagard, Holyoak, Nelson, & Gochfeld, 1990; Forbus, Gentner, & Law, 1994). As a first step toward
addressing this gap, we present computational experiments that suggest a single mechanism could account
for both types of retrieval. Our model of the retrieval process works by splitting symbolic descriptions of
situations into fragments of all sizes and searching for approximate matches to these fragments in descriptions
held in long-term memory. We show that, when features of a small size size are used to perform retrieval,
the model performs much like an novice. When the model prefers intermediate features to effect retrieval, it
approximates the performance of a expert.

Because our experiments suggest that fragments of an intermediate size are most useful for the purposes of
retrieval, we say that these results support the Goldilocks hypothesis: the right fragment size for recognition-
like tasks is intermediate, neither too large nor too small.

1.1 Psychological Data on Retrieval

Those who have studied analogy have been interested in how the retrieval process helps or hinders the dis-
covery, construction, or application of an analogy. The general form of their questions has been: Stimulated
by a description of some situation, what do people retrieve from long-term memory? The first specific instan-
tiation of this question was: Are subjects able to retrieve items that are profitable for analogical reasoning?

The pattern of experiments used to attack this question has been straightforward. The experimental
paradigm has been referred to as the “And-now-for-something-completely-different approach” (A. L. Brown,
1989); in it, the subjects are given some set of source tasks (such as memorizing a set of stories, or solving
a problem), and then after some delay are given a second set of target tasks which are apparently unrelated
to the source tasks. Unbeknownst to the subject, however, the two sets of tasks are related; the target
tasks can be solved by relating them in an analogical fashion to the source tasks. Experimenters then vary
the conditions of the experiment to determine the effect of variables of interest on the ability of subjects to
retrieve and apply the source tasks to the target tasks.

Studies of this sort have characteristically provided strong evidence that most people cannot retrieve
analogically profitable items from memory, even when delays between source and target tasks are short, or
when analogical relationships are especially obvious. The seminal demonstration of this was by Gick and
Holyoak (1980, 1983). In their experiments, subjects were asked to study a description of a military problem
and its solution. Later the subjects were given a medical problem and asked to provide the solution. The
medical problem was called the radiation problem because it dealt with using x-ray radiation to kill tumors,
and was strongly analogous to the military problem that they had studied earlier. The experimental group
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was given a hint to consider earlier parts of the session for ideas, while the control group was given no hint. In
the control group (no hint condition) only 30% of the subjects spontaneously noted and applied the analogy;
remarkably the experimental group (hint condition) had a solution rate of 75%. This suggests that over two-
thirds of the subjects1 were unable to spontaneously retrieve the analogous military problem on presentation
of the radiation problem, even when the two problems were presented within the same experimental session.

Since Gick and Holyoak’s study, many other experiments have provided evidence that people are unable
to discover analogies without guidance. Gentner and Landers (1985) conducted a story recall experiment
from which they concluded that, rather than retrieving on the basis of analogical relatedness, people retrieve
on the basis of surface similarity, meaning that what effects retrieval the most are the characteristics of actors
and objects involved in the description. Rattermann and Gentner (1987) went on to show that that object-
descriptions and first-order relations between objects promote retrieval, but higher-order relations do not,
and that ratings of inferential soundness and preference of retrieval are negatively correlated. Other problem
solving and retrieval studies showed that subjects needed to be explicitly informed of the relation between
two problems before they were able to apply analogical inferences, and that recall is heavily dependent
on surface semantic or syntactic similarities between representations (Reed, Ernst, & Banerji, 1974; Reed,
Dempster, & Ettinger, 1985; Ross, 1984, 1987). The pattern of retrieval shown by these experiments is clear:
analogically related items are not preferred in retrieval.

And yet, analogy is a process we draw upon every day in the cognitive tasks we perform. Indeed, the
process of analogy is common enough to stimulate many cognitive scientists to study it. How do we reconcile
this with the idea that analogically useful items are rarely retrieved? With this question in mind, some have
investigated whether, under certain conditions, retrieval of analogically related items is preferred.

Holyoak and Koh investigated whether analogical retrieval was preferred if subjects were more experienced
in the domain (Holyoak & Koh, 1987). Their experiment used psychology students who had been introduced
in a classroom setting to the radiation problem given in Gick and Holyoak’s experiments. These students
were asked to solve a problem analogous to the radiation problem, the lightbulb problem. In Gick and
Holyoak’s work, only 30% of people were able to solve the radiation problem when they were exposed to the
analogous military problem but not reminded of it; in Holyoak’s experiment, 80% of the students solved the
lightbulb problem without prompting or hints, indicating that a larger fraction had done structural encoding
and retrieval. Along the same lines, Fairies and Reiser (1988) argued that if subjects were told they would
be solving problems with the information they were provided, they would be more likely to encode structural
features which would be useful for recall. They showed that in a problem solving environment subjects can
encode structural features which can be useful later for structural recall.

Along with these experiments from the analogy literature, evidence drawn from the literature on experts
is suggestive that a high level of skill and training in a particular domain allows for the recall of analogically
related knowledge. For example, in a classic study, Chase and Simon (1973) showed that chess grandmas-
ters were able to “chunk” more information into meaningful units. In a similar vein, Chi and colleagues
(1981) demonstrated that physics experts (advanced graduate students in the area) categorize on the basis
of abstract physics principles, whereas novices categorize on the basis of literal features, and Schoenfeld and
Herrmann (1982) showed that mathematics novices sort problems on the basis of similarity, and are heavily
influenced by the presence of particular words or object descriptions. Adelson (1984) showed that experts
form abstracted, conceptual representations of problems whereas novices tend to form concrete represen-
tations. And Shafto and Coley (2003) have shown similar effects with college students versus commercial
fisherman in the categorization of marine creatures. Much recent work in expertise has concentrated on
perceptual tasks, such as face or object recognition, or categorization—for citations in this area, see the
excellent review by Palmeri, Wong, and Gauthier (2004).

In the study of analogy proper examination of analogical retrieval by experts has been sparse. There has
been some note, in passing, of the differences between experts and adults on the one hand and children and
novices on the other for the purposes analogical retrieval (A. L. Brown, 1989; Gentner, 1989). Novick is the

1In a previous control experiment it was determined that radiation problem had a 10% base rate of solution; this indicates
that, for the control and experimental groups respectively, at least 20% and 65% solved the problem by analogy, leading to the
estimate of approximately two-thirds increase for the experimental group relative to the control.
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most well-known researcher of analogy who has investigated the effects of expertise, and in an experiment of
her’s (Novick, 1988) it was shown that, overall, subjects of greater expertise demonstrated greater positive
analogical transfer and less negative analogical transfer, a finding that is consistent with the idea that
expertise allows for reliable recall of analogs.2

A minor point that may be important to keep in mind is that the experts in Novick’s studies were not
‘experts’ in the conventional sense of the word: as stated in the paper, the ‘experts’ and ‘novices’ were better
characterized as ‘more expert’ and ‘less expert’. The more expert subjects were merely undergraduates who
had obtained a higher score on a mathematics aptitude exam. The only work that we know of which directly
addresses retrieval in those we would consider truly experts is that of Shneiderman (1977) who showed
in studies of expert computer programmers that they recalled computer programs primarily based on the
purpose of the code, but not on its specific form.

But despite little direct study of analogical retrieval in experts, the evidence is highly suggestive, and it
strikes us as a natural and intuitive conclusion that experts are better at retrieving useful precedents within
their domain of expertise than non-experts in general. Until further experimental inquiry has shifted the
balance of the evidence, we will say we have identified two patterns of retrieval in the experimental literature
relevant to analogical reasoning. In novice-like retrieval subjects do not naturally recall analogically-related
items; to perform analogical retrieval they must be prompted and led to construct appropriate representa-
tions. In expert-like retrieval, subjects are able to recall structurally-related information in their domain of
expertise, even if they may not do so immediately and spontaneously.

1.2 Intermediate Features in Visual Classification

Because our inspiration comes from work published by Ullman, Vidal-Naquet, and Sali (2002), we will now
review those results to set the stage for our own work.

Ullman and coworkers noted that the human visual system assembles complex representations of images
from simpler features, and then presumably uses these features later for storing, retrieving, and identifying
related images. The question that naturally follows this is “which features are most helpful for these tasks,
especially identification?”

They investigated this question by directly measuring the mutual information of various image fragments
for the class in question. Mutual information is a formal measure of how good an indicator that feature
is for presence of the class; it is the amount by which your uncertainty of the presence of the class is
reduced when you know the feature is present. For their experiments, features were approximated by blocks
of pixels (fragments) of images. They searched a database of approximately 180 faces and automobiles
(that is, two classes) for fragments that matched well with a collection of approximately 50 selected face
fragments of a wide variety of sizes. The complexity was varied by blurring the features more or less. Their
measurements revealed that features of an intermediate size and complexity have, on average, the highest
mutual information. For example, if you find what looks like a pair of eyes (an intermediate feature), you
are more likely to have found a face than if you find what looks like a single eye (a small feature). Very
large features, such as a whole face, are rarely found anywhere except in the original image, so they have
low mutual information as well.

Using this information they designed a detection scheme that weighted discoveries of intermediate features
more heavily than discovieries of either small or large features and produced a 97% face detection rate in
novel images, with only a 2.1% false positives rate. They intuitively account for their detection scheme’s
impressive results by noting that small features produce many false positives (an eye often matches a random
image feature by chance) and that large, complex features produce many false negatives (a detailed image of

2There was some doubt about this effect, in that the second experiment reported in that paper failed to expose an ex-
pert/novice difference in negative transfer. This discrepancy was explained, however, by reasoning that the more expert
subjects postponed deep processing of the problems until they had realized that a quick, superficial retrieval based on surface
features would not suffice. This was confirmed in the third experiment by providing experts with both a remote analog and a
distractor source problem, providing the experts with a contrast and inducing them to more often recall and use the analog.
Such an explanation is also supported by the results presented by Blessing & Ross (1996), where experts were found to rely to
a certain extent on the superficial features of problems to predict deep structure (and therefore the solution procedure) when
the two are correlated in the problem domain.
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a face rarely matches anything in a collection of stored faces). Rather, it is the features of an intermediate
size and complexity that are most useful.

Others in object recognition have also shown this same effect (Serre, Riesenhuber, Louie, & Poggio, 2002)
and have applied the ideas of intermediate features to modelling object recognition in the brain (Lowe, 2000),
and image indexing and retrieval for large databases (Obeid, Jedynak, & Baoudi, 2001).

2 Overview

2.1 Retrieval Model

The psychological data reviewed above suggest that subjects display two sorts of retrieval patterns: a novice
pattern and an expert pattern. Drawing on inspiration from Ullman’s work, we hypothesize that an important
difference between the two types of subject is the informativeness of the features with which they retrieve
precedents: novices, because of their inexperience, try to retrieve using features of low informativeness, while
experts retrieve using features of high informativeness.

We can hypothesize which features will be, on the average, most informative by applying the same
intuition used in Ullman’s work. According to this intuition, small features produce many false positives while
large, complex features produce many false negatives, and it is features of an intermediate size that produce
the most useful retrieval. Put in terms of the analogical literature, sources that are merely-apparently-similar
to a target will have a large number of small features that match well, but few large features that match well,
and so will have a large collection of misleading features contributing to the retrieval. Analogically-similar
matches, on the other hand, will have a significant number of intermediate features that match well, but
few small features that match well. Thus as the average size of the features that participate in retrieval is
increased, the retrieval strength of merely-apparently-similar sources will decrease faster than the retrieval
strength of analogically-similar sources, moving away from a preference for merely-apparently-similar sources
(novice-like) to a preference for analogically-related sources (expert-like).

To demonstrate the validity of this intuition we constructed a retrieval model that can be tuned to
focus on features of particular sizes when searching for precedents in memory. The model works as follows.
First, its inputs are symbolic graph descriptions of both a stimulus scenario (the target) and a collection
of scenarios that are held in memory (the sources). We have a fairly controlled method for producing these
descriptions from English text; this method is covered in Section 2.3, and the representations are covered in
detail in Section A.1.

Second, the model breaks up the symbolic description of the target into features (graph fragments)
and searches for best matches to those features within the source descriptions in memory. The features are
analogous to the face fragments in Ullman’s work. Searching for the features consists of constructing a match
score between each feature in the target and each feature in every source. The match score between two
features increases with their semantic similarity, structural similarity, and their size. Two features will have
a low match score if they are semantically dissimilar, structurally dissimilar, or radically different in size.
Each feature from the target description is then assigned a most-similar feature from each source description
in memory (most-similar, that is, on the basis of the match scores). Examples of calculations of these match
scores can be found in Section A.4

Third, the model adds all the match scores for each source together to form a retrieval score for that
source, relative to the target in question. This score is the final output of the model, and the magnitudes
of these scores are taken to indicate which descriptions are more or less likely to be retrieved. The model
has two thresholds that control the range into which a match score must fall before it is added to the total.
These thresholds indirectly control the average size of the features that are participating in the retrieval.
The reason for applying the thresholds to the match score, instead of directly to the feature size, is reviewed
in Section 4.1.

The model is intended to demonstrate how intermediate features can enable expert-like retrieval. It is
not intended as a model of exactly how retrieval is carried out in the head. The model is intended to support
a hypothesis that is, in Marr’s sense of the word, at the computational level. We hypothesize that expert-like
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analogical retrieval takes advantage of features of high mutual information, and these features will be, for
any given representation, on the average, of an intermediate size. This hypothesis entails that any retrieval
method that uses feature-based retrieval and is intended to consistently effect analogical retrieval must, at
some point, perform the same computations that are performed by our model. Because of this, such a
retrieval process will display a dependance on feature size and informativeness similar to that shown by our
model. This point is discussed in more detail in Section 4.

2.2 Experimental Methodology

In our experiments, we adjusted the thresholds of the model to different values to control the average size
of the feature participating in retrieval. As already noted, the hypothesis was that a small average feature
size will achieve novice-like retrieval, and an intermediate feature size will achieve expert-like retrieval.

We used a dataset of our own construction in Experiments 1 and 2, and the Karla the Hawk dataset
(Gentner, Rattermann, & Forbus, 1993) for Experiment 3. The construction of our dataset is covered in
Section 2.3. The datasets contain a set of targets and a set of literally-similarly-related, analogically-related
and merely-apparently-related sources, matched to each target. These classes of story relationships are not
unique to our work, but follow on those established in the analogy literature (Gentner, 1983; Gentner &
Landers, 1985). We review these story relationships in Section 2.3. Our dataset contained a fourth type of
description, less-analogically-related, the form of which is also discussed in the next section, and the need
for which is discussed in Section 4.1.

In each experiment, the retrieval model was used to produce a retrieval score for each target relative to all
the other targets and sources in the dataset at a range of thresholds, where each score indicates the strength
of retrieval, and their order is the predicted retrieval order. The outcome was evaluated by looking at the
relative strength of retrieval for all the different types of sources (Forbus et al., 1994). For the novice-like
pattern, the expected order of retrieval for sources related to the target was

literally-similar > mere-appearance > analogical > less-analogical

For the expert-like pattern, we expected

literally-similar > analogical > less-analogical > mere-appearance

As can be seen, the difference between these two retrieval patterns is the position of the mere-appearance
target. We formulated a simple measure of the goodness of fit of retrieval scores to these patterns that is
covered in detail in Section 3.1.2. The measure can be thought of as the answer to the following question:
“Given the order of two sources, what is probability that those those sources are in the proper order?” The
question can be asked for both novice-like and expert-like retrieval, thus producing two curves for each set
of retrieval data.

2.3 Conflict Dataset

To measure how well the model reproduces expert-like or novice-like retrieval, we must know before we
begin how the sources are related to the target, be it in an analogical, less-analogical, mere-appearance,
literally-similar, or unrelated way. In the human subjects experiments, this is usually done by constructing
a story-set by hand and making sure the targets and the sources have the desired relationships. The Karla
the Hawk dataset, which we use in Experiment 3, is a classic example of this. We follow a similar procedure
in the construction of our dataset for Experiments 1 and 2, except that our construction procedure was done
mostly automatically, described as follows.

We first constructed a small set of graph representations of targets. The descriptions were paraphrased
by hand from encyclopedia entries into extremely simple English and then parsed with a program that
translates those descriptions into graph representations readable by the retrieval model. The parser gives
uniform results because it always produces the same graph structure when the input conforms to a recognized
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The KhmerRouge controlled Cambodia.

Cambodia attacked Vietnam because the KhmerRouge disliked Vietnam and The KhmerRouge

controlled Cambodia.

Vietnam disliked the KhmerRouge because Cambodia attacked Vietnam.

Vietnam attacked Cambodia because Cambodia attacked Vietnam.

Vietnam’s army was larger than Cambodia’s army.

Vietnam defeated Cambodia because Vietnam’s army was larger than Cambodia’s army and

Vietnam attacked Cambodia.

Vietnam ousted the KhmerRouge because Vietnam defeated Cambodia.

China invaded Vietnam because Vietnam ousted the KhmerRouge.

Vietnam didNotWant China to invade Vietnam.

Vietnam’s army impeded China invading Vietnam because Vietnam didNotWant China to invade

Vietnam and China invaded Vietnam.

China left Vietnam because Vietnam’s army impeded China invading Vietnam.

Figure 1: Sample Simple English Situation Description: China’s Invasion of Vietnam in 1979

T

army-2
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army-1
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vietnam-1
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china-1
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S
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S
TrajectoryLadder-9
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S
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Spath-2
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Spath-4
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Rattack-2
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Rgo-1

Dto-1

Dat-1
Dto-2
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Dfrom-1

S
TrajectoryLadder-7

Figure 2: Sample Symbolic Description Graph: China’s Invasion of Vietnam in 1979

6



M.A. Finlayson & P.H. Winston The Goldilocks Hypothesis

syntactic and semantic pattern, such as “X [move verb] toward Y”, or “X caused Y.”3 We synthesized
sources by systematic transformation of the nodes and threads in the target. For each target, we made four
sources from its description: an analogically related match (AN), a less-analogically related match (LAN),
a mere-appearance match (MA), and a literally-similar match (LS).

The descriptions were all within the domain of inter- and intra-national armed conflict, and, with two
exceptions, drawn from The Encyclopedia of Conflicts since World War II (Ciment, 1999). Because of
this we will call this dataset the Conflict Dataset. The target scenarios that were paraphrased were the
1989 civil war in Afghanistan (Ciment, 1999, p. 237), the Vietnamese invasion of Cambodia (p. 368), the
Chad-Libya war (p. 389), the Chinese invasion of Tibet (p. 415), the 1962 China-India border war (p. 436),
the 1969 China-USSR border war (p. 436), the 1979 war between China and Vietnam (p. 446), the 1997
civil conflict in the Congo (p. 487), the Bay of Pigs invasion of Cuba (p. 1,961), the 1968 Soviet invasion
of Czechoslovakia (p. 533), the first Persian Gulf war (p. 811), and the Nigerian civil war (p. 1,038). Two
additional paraphrases, of the American Civil War and American Revolution, were written from memory.

Shown in Figure 1 is our paraphrase of the three and a half page description of China’s invasion of
Vietnam in 1979 from The Encyclopedia of Conflicts. The paraphrase is in simple English that is parsable
by our system. Each paraphrase was between 9 and 28 sentences long (average 16.3, standard deviation 5.4).
This description, given to the parser, produces a symbolic description graph, shown in Figure 2. The specific
graph representations that are used in forming this description are covered in detail in Section A.1. In graph
representation form the paraphrases contained from 39 to 110 nodes (average 65.3, standard deviation 20.2).
Detailed characterization of the descriptions can be found in the Section 3.3.1 of Experiment 3, where they
are contrasted with the Karla the Hawk dataset.

To generate the related sources for each target, we had a program perform a fixed generation procedure
that operated on the graph representations. For example, suppose we began with a target description “The
boy ran to the rock and hid because the girl threatened him.” A description literally similar to this target has
both highly-similar objects, but also a structurally and semantically similar relational and causal structure.
In our implementation we replaced each object with another object which nearly exactly the same. Thus we
might replace boy with man and girl with woman and rock with boulder to produce “The man ran to the
boulder and hid because the woman threatened him.”4

A description that is merely-apparently similar to the original target description would be one that has
highly similar objects and simple relations, but a different higher order relational and causal structure. To
obtain a merely-apparently similar source, we leave the objects unchanged, but scramble the higher-order
structure. This means that we take higher-order pieces and randomly switch their subjects and objects.
This might produce “The girl threatened the boy because he ran to the rock and hid.”

A description that is analogically similar to the original target description is one in which higher-order
structure is highly semantically similar, but the objects are not. To effect this we replaced all the objects in
the target with objects which matched on only highest membership classes, while leaving the higher-order
structure unchanged. Thus a generated analogical source might be “The army retreated to the castle and
dug in because the enemy army approached.”

A description that is less-analogically similar to the original target is one in which some fraction of the
higher-order structure is highly semantically similar, but not all of it. To make one of these from the target,
we transform as if to make an analogy, but we mix up the subjects and objects of some fraction of higher-
order relations as is done for a mere-appearance match. For the experiments presented in this paper, the
fraction was approximately one-third. This might produce “The army returned to their castle, but they only
dug in when the enemy approached.”

Table 1 summarizes the different sorts of source types and their examples.
3Although this english-to-graph-representation parser has not yet been described in the literature, it is quite close to that

reported in previous work from our laboratory (Winston, 1980, 1982).
4In our representation, defined in Appendix A.1, this meant that we replaced one object with another that matches on all

but the last thread element.
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Type Example

Target The boy ran to the rock and hid because the girl threatened him.
LS Source The man ran to the boulder and hid because the woman threatened him.

MA Source The girl threatened the boy because he ran to the rock and hid.
AN Source The army retreated to the castle and dug in because the enemy army approached.

LAN Source The army returned to their castle, but they only dug in when the enemy approached.

Table 1: Examples of systematic transformations of a target into literally similar (LS), merely-apparently
similar (MA), analogical (AN), and less-analogical (LAN) descriptions.

3 Experiments

We performed three experiments to test the performance of our model. The first experiment demonstrated
how the model moves from novice-like to expert-like retrieval as the average feature size is increased. The
second experiment showed that large features do not contribute significantly to the novice retrieval pattern.
The third experiment was a repeat of the first, except it was done with the Karla the Hawk dataset and
showed only a modest effect consistent with our predictions. In-depth discussion of the results will be deferred
to Section 4.1.

3.1 Experiment 1: Retrieval Simulation by Increasing Threshold

3.1.1 Procedure

This experiment used our Conflict dataset. As already mentioned, it consists of fourteen target descriptions
paraphrased in simple English and parsed into our graph representation, followed by a set of four source
descriptions automatically generated from each target, for 56 sources in total. The retrieval model, described
in algorithmic form in Section A.2, was used to measure the retrieval score between each target and all 56
sources for every setting of the lower threshold. The upper threshold was set at infinity. The algorithm
is such that feature-feature matches with scores less than the lower threshold are not included in the final
retrieval score, causing the average feature size to increase as the lower threshold is increased.

3.1.2 Results

The order of retrieval was compared to the predicted order for both Novices and Experts, resulting in two
‘probability’ curves shown in Figure 3, graphed against the value of the lower threshold.

These curves show the probability of producing the correct human retrieval order calculated from the
retrieval scores provided by the algorithm. As can be seen, the novice order is well predicted at a low
threshold, that is, at a low feature size. The expert order is well predicted at intermediate feature sizes. The
abscissa runs until the threshold is larger than the score of any feature-feature match score.

The probability curves were calculated as follows. Each source that was in the correct order relative to
its associated mere-appearance target score was assigned a value of 1 (i.e., a correct prediction). If in the
incorrect order, it was assigned a value of 0. If equal, they were given a value of 0.5 (indeterminate; fifty
percent chance of choosing the correct order). These values were then averaged to obtain the probability of
making a correct order prediction at a given threshold given the retrieval scores assigned by the model. As
the novice or expert retrieval patterns differ only in the position of the mere-appearance source, only source
positions relative to the mere-appearance source were considered.

It is important to note that the retrieval algorithm had in memory not only the sources generated from
each target, but all other matches for all other targets as well; that is, there were 52 distractors in memory
for every target. The retrieval algorithm always gave the four sources generated from each target the highest
four scores, and all other sources—the distractors—came back with significantly lower scores.
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Figure 3: Probability of predicting the correct ordering (Novice or Expert) averaged over the dataset, against
the lower threshold. The behavior of our test program becomes more like that of human experts when features
of intermediate size begin to participate in matching, at a size threshold of about eight, but then the behavior
degrades when only larger features are allowed to participate, at a size threshold of about 18.
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Figure 4: Raw retrieval scores as produced by the algorithm. Scores are normalized by dividing by the self-
match score of the target description from which other descriptions are derived. As the threshold increases,
fewer and fewer features are large enough to be counted, until no feature is large enough, and the scores all
drop to zero.
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For the reader’s reference, the raw values of the retrieval scores are shown in Figure 4, normalized at
each threshold by dividing by the maximum possible score achievable at that threshold. This is the actual
output of the retrieval algorithm, used to calculate Figure 3.

3.2 Experiment 2: Retrieval Simulation by Decreasing Threshold

3.2.1 Procedure

This experiment used the same dataset and procedure as the first experiment, except that the lower threshold
was fixed and the upper threshold was varied. This variation was performed to make sure that high-scoring
feature matches are not contributing significantly to the novice-like retrieval pattern. High-scoring feature
matches generally correspond to matches between large and intermediate, higher-order features, and these
scores are included in the final score when the threshold is low (and also when it is intermediate). But,
according to our hypothesis, novices are characterized by their inability to access, index, or form these
higher-order feature pairs, and so they should not be using them for retrieval. To confirm that the inclusion
of these high-scoring match pairs was not significant to the novice-like retrieval results in Experiment 1, we
measured the retrieval behavior that resulted by discarding higher-scoring matches.
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Figure 5: Probability of predicting the correct ordering averaged over the dataset, as the threshold is dropped
from above. As expected, the behavior of our test program mirrors human novices until most of the features
of small size no longer participate in matching, at which point the results fluctuate widely because relatively
few features participate in the match.

To implement this test, we set the lower threshold at zero, and ran the model for all values of the upper
threshold. When the upper threshold is higher than the largest feature score all features are included in
the final retrieval score. When the upper threshold is zero no features are included, and all targets receive
a score of zero. Because matches with scores larger than the upper threshold are discarded, the average
feature size participating in retrieval decreases as the upper threshold decreases.

3.2.2 Results

Results for Experiment 2 are shown in Figure 5. As the upper threshold is lowered, the novice retrieval
pattern is maintained until features with small scores begin to be discarded, at which point it begins to
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degrade. This result confirms that higher-scoring features do not significantly contribute to the novice
retrieval pattern. Furthermore, because intermediate and small features together do not produce expert-
like retrieval, and neither large-features (Experiment 1) nor small features (this experiment) alone produce
expert-like retrieval, we conclude that intermediate features, or intermediate-features in conjunction with
large features, are responsible for expert-like retrieval.

3.3 Experiment 3: Retrieval Simulation with Karla the Hawk Dataset

3.3.1 Procedure

For this experiment we obtained the Karla the Hawk dataset, which has been used with both human subjects
and computational models (Forbus et al., 1994). We translated this dataset into our own representation as
described in Section A.1. The Karla the Hawk dataset contained nine story sets, of which we used five5. We
chose this subset of the Karla the Hawk stories because this subset was closest to our dataset in terms of the
statistics of number of nodes and semantic tags (as measured by the average and variance). Each story set
contains a target with related literally similar, true analogy, mere appearance, and false analogy source. A
histogram of the average number of nodes broken down by node type, for both the conflict dataset and the
Karla the Hawk dataset, is shown in Figure 7, and a histogram of the average number of thread elements
(semantic descriptions) is shown in Figure 8. Except for the dataset generation, which was omitted, the
procedure was the same as in Experiment 1.
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Figure 6: Probability of predicting the correct ordering (either Novice or Expert) averaged over the dataset,
against threshold, for Karla the Hawk data. Features of intermediate size appear to figure in expert behavior,
but with a less dramatic effect than seen in our conflict data set.

3.3.2 Results

The results, shown in Figure 6, show a modest effect that is consistent with our expectations. The results are
noisier and not as clear as those in Experiments 1 and 2, and we hypothesize that this is so for two reasons:
first, the lack of a class of less-analogical sources in the Karla data, and second, the less dramatic nature
of the analogical relationships in the Karla data (less dramatic relative to those in our generated dataset).
These points are discussed in more detail in Section 4.1.

5Story sets 5, 7, 8, 12, and 17.
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Figure 7: Histogram of the average number of nodes in different categories. Error bars indicate one standard
deviation. The dashed lines indicate different ways of characterizing all the nodes in the descriptions: the
first bar deals with all nodes; the second through fifth bars deal with nodes divided by type; the sixth through
fifteenth bars (those numbered 0 to 9) indicate nodes broken down by order. Karla the Hawk data is only
for the five scenarios used in our experiments. The Karla the Hawk data does not have a node category
analogous to what we call derivatives. Our conflict data and this subset of the Karla the Hawk data exhibit
similar node counts in various categories and at various sizes.
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Figure 8: Histogram of the average number of thread elements per node for different categories. Error bars
and labels are the same as in Figure 7. Evidently, our conflict data and the Karla the Hawk data exhibit
similar characteristics with respect to the number of classes associated with nodes in various categories and
at various sizes.
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4 Discussion

4.1 Experimental Results

Here we review the results of the three experiments and their interrelationships. The retrieval model works by
breaking the target into features (pieces of the description), and then looking for these features in the sources
to determine which sources are more likely to be retrieved. The model prevents features from influencing
the retrieval based on their feature-feature match score. This is contrary to what one would expect: if one
assumes that the most informative features are, on average, those of intermediate size, the most obvious way
to bias toward expert-like performance is to filter on feature size directly, allowing only intermediate features
to influence retrieval.

This method of producing expert-like retrieval allows both informative and uninformative intermediate
features to affect retrieval, and, with a small dataset, this lack of specificity in the informativeness of the
features leads to losing the expert-like retrieval effect in the noise. One would expect that with an extremely
large dataset, say, a thousand, or ten-thousand precedents, analogous matches would rise above the non- or
less-analogous matches to the extent which intermediate features are on the average more informative; but
because the difference in mutual information is relatively small, the noise dominates with a small dataset.

As noted in the next section, to be truly effective using intermediate features for retrieval, you have to
know what features are most informative before you begin. In our experiments, we must estimate the mutual
information of the features because we do not have a large dataset that allows us to measure it directly.
Thus, instead of filtering on the size of the features, as is the obvious way of directly demonstrating the
effect, we filter on how well the feature from the target matches the source. We see the match score that
the model calculates for a feature given a source as loosely analogous to the informativeness of the feature
for that particular source. Match scores of intermediate magnitude correspond to good matches between
pieces of intermediate sized structure, be they features of an intermediate size or portions of larger features.
Thus, when we filter on match score, to only allow those of intermediate magnitude to effect the retrieval,
this will have the effect of biasing the retrieval toward highly-informative intermediate features, and will
appropriately test the hypothesis.

We are now in a position to examine the results of Experiments 1 and 2. In Figure 9 the results of
both experiments are placed side-by-side, with Experiment 2 on the left and Experiment 1 on the right.
The thresholds in the two experiments control the range of match scores that are included in the retrieval
score of each source. At the center of the figure, where the two graphs meet, match scores of all magnitudes
influence the retrieval score. This gives novice-like retrieval. As we move to the left, the upper threshold of
Experiment 2 removes higher-scoring matches first. When we reach the point where we are only allowing
the smallest match scores to affect retrieval (as we approach the far left of the figure), every match score is
a large portion of the retrieval, and so as they are slowly removed, the scores vary wildly and unpredictably.
Starting in the middle again, and moving toward the right side of the figure, the lower threshold starts from
zero and steadily increases, throwing away smaller scoring matches first. As we move to the far right of the
figure, only high-scoring matches affect retrieval, and since these are extremely rare, most of the retrieval
scores are zero.

The overall effect of the two thresholds can be thought of as a ‘window’ that moves from left to right
over the range of possible match scores. Wherever the window falls, these match scores are added together
to form the retrieval score. This is indicated by the boxes at the bottom of the figure. The order of the
retrieval scores for each target’s generated source matches is then used to calculate the fraction of times that
the retrieval algorithm produces the expert-like or novice-like retrieval order at that threshold. As can be
seen, the only place where expert-like retrieval is achieved is when the lower threshold is slightly less than
an intermediate size, meaning that both intermediate and large feature match scores are contributing to the
retrieval scores. Because large feature match scores do not achieve expert-like retrieval (the far right side of
the graph), and because, by virtue of the retrieval score being a linear sum, the inclusion of large features
neither suppresses nor amplifies the effect of other features, we must conclude that intermediate features
alone are responsible for the expert-like retrieval effect.
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Figure 9: The range of features match scores that are included in the retrieval procedure for various values of
the lower and upper thresholds. The retrieval procedure always uses a continuous interval of match scores;
the interval is bounded below by the lower threshold, and above by the upper threshold. This range is
represented by the boxes at the bottom of the diagram. At the far left, only small feature matches are used.
In the middle, all matches are used. At the far right, only large matches are used.

Because we see only expert-like retrieval when we cut off the bottom-third of the match score range, we
repeated only Experiment 1 on the Karla the Hawk dataset. The Karla the Hawk data set is also small,
only nine stories; because we took care to choose a subset of the stories that produced similar statistics in
the number of nodes and number of semantic tags, our sample was reduced to five stories. Even so, there is
a noticeable expert-like retrieval effect at an intermediate size.

A few words on the modest size of the expert-like retrieval effect with the Karla the Hawk stories. The
dataset was designed for dual use in both computational and psychological experiments, and so the associated
analogies are much more subtle than those generated by our source synthesis procedure. Because there is
only a small distinction between a mere-appearance source and an analogical source, noise due to small
sample size causes the probability curves to jump back and forth erratically as features are removed from
consideration and the mere-appearance and analogical retrieval scores rise and fall. We believe that this
could have been solved by the introduction of a less-analogical source into the dataset. This is illustrated in
Figure 10. The expert-like and novice-like order calculations depend on the position of the mere-appearance
source relative to all the other sources. If there had been a a less-analogical target (or better yet, a series
of less-analogical targets running the range from non-analogical to analogical), any particular order of the
mere-appearance source relative to any other source would be a much smaller fraction of the average, and
so slight variations at the transition point (i.e., the threshold), will have less effect.

In addition to this sampling effect, the data is more sensitive to variation in scenario size because of the
subtlety of the relationships. This is because ‘intermediate’ is relative to the size of the scenario. The larger
the scenario, the larger the size of an intermediate feature. Although the scenario sizes vary widely in the
conflict dataset, we did not have to normalize to see an effect. This is because the analogical relationships
were quite dramatic, and there was some overlap in the intermediate features range. In the Karla the Hawk
data, we believe this contributed a suppression of the expert-like effect. In future experiments, we may wish
to normalize for feature size and thereby show a more dramatic effect in the Karla the Hawk data.
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Figure 10: (a) and (b) are ideal cases, when all scenarios contain infinitely many features of all sizes, resulting
in perfectly smooth lines. In these cases, it doesn’t matter if one has less-analogical matches (LANs) or not.
(c) and (d) show the non-ideal cases, when scenarios are made up of a limited number of features. In
(c), where there are no less-analogical matches, any noise in the position of the MA match can change the
measured match to the novice-like or expert-like order by up to 1/3. In (d), where there are n less-analogical
matches of varying strengths, noise can only change the measured match to the novice-like or expert-like
order by 1/(3 + n). Thus the variance of the noise in case (d) is smaller.

4.2 Expertise and Intermediate Features

It is our goal in this paper to demonstrate the utility of intermediate features for producing expert-like
analogical retrieval. We do not claim that our algorithm represents what actually occurs in the brain,
but rather that it indicates information that must computed at some point in the process if intermediate
features are to influence the process. We interpret our results in a meta-framework akin to those presented
in (Keane, Ledgeway, & Duff, 1994) and (Palmer, 1989). In these views, the ACME and SME models of
analogy provide computational -level constraints on the process of analogy, and Keane’s IAM model provides
algorithmic-level constraints. Similarly, we see this work as indicating a computational-level constraint on
the process of retrieval: the human retrieval system attempts to extract intermediate features from targets
and sources for use in retrieval.

This being said, we have demonstrated that, in principle, the use of intermediate features in retrieval can
lead to expert-like performance. Is this to say that intermediate features are alone responsible for expertise?
This would be a strong claim; indeed, we do not make this claim, for at least two reasons.

The first reason is exemplified by the following piece of (specious) advice: Since intermediate features
allow you to perform like an expert, just look for intermediate features when you are retrieving, and an
expert you will be. Clearly this advice borders on the absurd. Turning a novice into an expert requires more
than just this. What more does it require? It requires that you know which intermediate features to look
for.
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We can see this by thinking of the many different ways of describing any particular scene. Take the
example from above, the scene described by “The boy ran to the rock and hid because the girl threatened
him.” If we were actually watching this scene take place, how might we possibly describe it? There are
innumerable ways to do so, only some of which can be used for identifying useful analogies. For example,
we might take note of the girl’s threatening words, and how the boy was crouching behind the rock and
peeking out from behind it. Alternatively, we might go into detail about what they were wearing, or how
exactly their limbs moved relative to their bodies in causal or temporal sequence, or describe the series of
rationalizations and emotions that the boy and girl experienced as the scene played out. All of these might be
valid descriptions, and in them we could find features of an intermediate size. But they would not be useful
for finding analogs like “The army retreated to the castle and dug in because the enemy army approached.”
There are an extremely large number of possible descriptions of any scene, and an extremely large number of
intermediate features for each of those descriptions, and only some of these intermediate features are highly
informative. Thus the qualification, found throughout this paper, that intermediate features are only on the
average more informative than features of other sizes. Not all intermediate features are highly informative
(and, indeed, not all small or large features are uninformative). What it takes to make a novice into an
expert is not only the knowledge that one should be looking for features of an intermediate size, but the
knowledge of which ones are the most informative.

As some readers may have already realized, there are some cases where describing the scene in terms
of the clothes worn, the movement of the limbs, or the emotions experienced would allow the describer to
discover useful analogs. That is the case where you are interested in precedents that are analogous in that
way. In this case, all the scenes (or some large, relevant fraction) in your memory would need to be described
in that way, and people with these sorts of memory we would probably consider ‘experts’ in fashion design, or
biomechanics, or psychology, respectively. This leads to the second reason that intermediate features cannot
be the sole mechanism of expertise: expertise requires representational uniformity.6 If you are not casting
descriptions in the same sorts of representations, with the same descriptive conventions, highly informative
intermediate features from one domain and type of description will not help you find useful analogs in your
memory, since the precedent that would help is probably not coded in the right form.

These two reasons that intermediate features cannot be the sole mechanism of expertise raise two impor-
tant questions: how do experts learn which features are the most informative, and how do they learn what
representations most efficiently reveal these features? This is an important question to ask, and an answer
will be required for the proper integration of the insight of intermediate features into practical models of
retrieval (as discussed in the next section). However, it is not a topic we tackle in this current work, and
thus we will say no more here.

4.3 Leveraging Intermediate Features

If we take for granted the result that intermediate features are the most useful features for analogical retrieval,
how could we leverage this knowledge in a practical retrieval scheme? As already noted, the algorithm used
in this work was designed to emphasize clarity and circumvent the small size of the available datasets. In this
section we propose a straightforward way of using intermediate features in retrieval. We also indicate how
the intermediate features insight can be integrated into two other prominent models of analogical retrieval,
the MAC/FAC model and the ARCS model, to allow those models to tune to novice-like or expert-like
retrieval.

It is important to note first that all of these approaches to using intermediate features presuppose that the
most informative set of features (most of them intermediate) is already known. This is major presupposition,
and, as mentioned in the previous section, it is not a topic that we treat in this work. Presumably this process
of discovery is time- and resource-intensive, and the set of features discovered domain-specific. Before
intermediate features can be practically integrated into a model of retrieval an adequate solution must be
presented to the problem of discovering the most informative set of features for retrieval.

6This has already been proposed by a number of other research. See, for example, (Chi et al., 1981), or Forbus and colleagues
in (Forbus et al., 1994, Section 7.1.7) as a way to extend MAC/FAC model of analogical retrieval to cover expert-like results,
viz. richer and better structured representations and greater representational uniformity.
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A simple procedure for leveraging a known set of intermediate features might be as follows. First, as
precedents are learned, they are analyzed in light of those features that are most informative for the domain.
The precedents are then indexed by those features, allowing them to be retrieved with little or no effort. In
detail:

1. Analyze potential precedents at storage time, using a O(n2 log n) greedy matcher (in the number of
nodes) to look for features of an intermediate size that are known to be popular in the domain.

2. Characterize each stored precedent by the names of the features contained.

3. Retrieve precedents using named features and an O(n) vector dot-product method (in the length of
the vector).

For those readers familiar with other models of analogical retrieval, this above proposed method will
likely strike them as similar to the MAC/FAC model by Forbus, Gentner, and Law (1994). Indeed, this is
no accident. While our model stands apart from MAC/FAC by virtue of its variable feature-size mechanism,
and MAC/FAC has not yet been used to account for such a distinction between novice and expert, we see
that our model has quite strong intersections with the MAC/FAC model. MAC/FAC is a two-stage process:
the first stage, the “Many Are Called” stage (MAC), performs a computationally inexpensive non-structural
match between a target and source in memory; the second, “Few Are Chosen” (FAC) stage carries out a
more expensive structural match between the target and the best source candidates from the first stage. The
non-structural match score (the MAC stage) is the dot-product between two content vectors. These vectors
are a non-structural summary of the numbers of objects and relations found in that item. For example,
if an item is “The brown dog bit the old dog and the nice man,” the content vector would be [brown=1,
dog=2, bite=1, man=1, old=1, nice=1]. The more computationally expensive FAC stage operates on
the best results returned by the MAC stage, using a structural mapper to score them relative to the target
according to the soundness of their structural mappings. The process uses two thresholds, one to choose
the top portion of the MAC stage output for input to the FAC stage, and one to choose the top portion of
the FAC stage output for retrieval results. MAC/FAC was used to model several psychological phenomena:
the primacy of literally-similar remindings, the high frequency of mere-appearance similar remindings, and
the rare occurrence of structurally-based (analogical) remindings. The model produces what we have been
calling the novice retrieval pattern: literally-similar > mere-appearance > analogical.

Integrating a variable feature-size mechanism in MAC/FAC could be accomplished by an extension of the
MAC stage. As it stands, the MAC content vector includes only what we have been calling small features:
individual objects and relations. Thus, consistent with our results, MAC/FAC achieves novice-like retrieval.
If the MAC stage were allowed to include pieces of description of all sizes on the content vector, and the
dot-product operation was extended to allow structural comparison between the pieces, this would allow one
to vary the informativeness of the description pieces that influence the retrieval. If the most informative
features were known for the domain, and it was made sure that these were added to the content vector,
then, we hypothesize, the retrieval of the model would be tuned to expert-like retrieval. If this were so, the
model could then be tuned to any level in between novice and expert by varying the numbers or weights of
the various sizes of features. We suspect that this inclusion of structure in the MAC stage would eliminate
or reduce the need for the FAC stage.

Intermediate features can also inform the other major model of analogical retrieval, the ARCS model
by Thagard, Holyoak and colleagues (Thagard et al., 1990). ARCS, which stands for Analog Retrieval by
Constraint Satisfaction, effects retrieval by creating a constraint-satisfaction network over correspondences
between representational pieces of the source and the target, then using a standard parallel connectionist
relaxation algorithm to allow the network to settle into a state which indicates the relative strength of
retrieval of various targets in memory. The nodes in the network are constructed by applying semantic
constraints between the source and targets, and links (either excitatory or inhibitory) are constructed using
systematic and pragmatic constraints.

Like the MAC/FAC model, ARCS models only a single type of retrieval that is, as far as can be told,
somewhere between novice-like and expert-like. Intermediate features point the way to extending ARCS to
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model both novice-like and expert-like retrieval. We hypothesize that if a filter were applied to the construc-
tion of nodes in the constraint network, biasing toward groupings of nodes that were more informative, the
network could be tuned to novice-like or expert-like retrieval.

4.4 The Goldilocks Hypothesis

We see this work as an instance supporting a broad hypothesis that we call the Goldilocks hypothesis. This
hypothesis states that, on the average, those features that are maximally useful for recognition are neither
too small nor too big, neither too simple nor too complex, but rather in the middle: intermediate in size
and complexity. Taken as stated, this claim is quite broad, and is not limited to a specific domain or
representation, but instead with representation in general. Our work could be considered a single instance of
support for this hypothesis; taken with other instances, it is suggestive, although by no means conclusive, of
the hypothesis’s computational power. We have already reviewed a second instance that we see as supporting
the hypothesis, that of Ullman’s computational work in vision. In this section we will highlight two additional
areas of study that we think speak to the validity of the Goldilocks hypothesis. We hope that presenting
these beside one another suggests, more than mere speculation might, that the Goldilocks hypothesis has
some basis in reality.

The first results beyond our own work and that of Ullman’s that we think support the Goldilocks hy-
pothesis are from the the study of narrative structure. Since the very early days of artificial intelligence and
cognitive science, there has been an interest in characterizing the representations that are used to understand
and store narratives, whether gathered from discourse or from one’s own experience (e.g., autobiographi-
cal). There has been a focus on what has variously been called scripts, plans, schemata, or themes as
representational structures. For example, one of the very earliest attempts to set out a theory of narrative
representation, that of plot units, was by Lehnert (1981). Conceiving of stories as most profitably charac-
terized at a level of abstraction that would include such events as retaliation or regrettable mistake, Lehnert
and colleagues showed how these representations could distinguish between stories, and map out their flows
and their chokepoints (Alker, Lehnert, & Schneider, 1985).

Experimental investigation into the psychological reality of plot units indicated that people were indeed
highly sensitive to plot units and protagonist goals (Reiser, Black, & Lehnert, 1985). It has been found that
the accurate recall of a story is a function of its inherent plot structure (Thorndyke, 1977), and that higher-
order elements in a story (as indicated by a hierarchical description of the story) are remembered better
over long periods of time (Stanhope, Cohen, & Conway, 1993). Perhaps the most convincing demonstration
of the psychological reality of characterizations of stories above specific, object-oriented levels, but below a
unitary level, have come from psychological experiments that demonstrate that thematically similar stories
can show priming effects without inducing actual recall of the similar story (Seifert, Abelson, McKoon, &
Ratcliff, 1986; Schunn & Dunbar, 1996). This shows that thematic representations are actively extracted
and stored explicitly in memory. Additional evidence for intermediate type features in coherent narratives
comes from the rich literature on the study of autobiographical memories. It has been shown, for example,
that old autobiographical memories are organized by theme, or distinctive element (Sato, 2002), and that
activities are shown to be preferred for indexing of autobiographical memories (Reiser, Black, & Abelson,
1985). There has been quite suggestive work that events serve as a strong organizer for autobiographical
memories (N. R. Brown & Schopflocher, 1998).

These structures can be conceived as intermediate-type representations that maximize one’s ability to
recognize and categorize different sorts of narratives. Note that here there is a direct interplay between
feature size and abstraction. Abstraction can be seen as a method for generating intermediate (and larger)
features and vice-versa: intermediate features can be seen as abstractions. The actual formal size of the
feature is not important; what is important is the mutual information of the feature for the category that
the feature is used to recognize. Abstractions, and similarly features larger than those of atomic size, are
constructed by integrating together pieces of information about what is being described. The Goldilocks
hypothesis states that, at some point, on the average, you reach a point of diminishing returns: the more
pieces of information you add to your description, the less mutual information you get. The Goldilocks
hypothesis also says that you can tolerate some smoothing of the pieces, so to speak, some elimination of
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detail.
We move to our fourth and final instance in support of the Goldilocks hypothesis, in the domain of

object categorization. In the mid-1970’s Rosch proposed that object prototype effects were the result of a
principle of cognitive economy which put the maximum amount of information in a privileged middle level
of categorization hierarchies (Rosch, 1978). She proposed that there is a level of abstraction, called the basic
level, which lies in between superordinate categories (which include many objects), and specific categories
(which include few objects). Experiments have repeatedly shown the primacy of basic-level categories in
identification tasks (Murphy & Smith, 1982; Murphy, 1991), and other researchers have extended her work
to other domains, such as events (Rifkin, 1985; Morris & Murphy, 1990). This work in psychology was
complemented by related work in anthropology which demonstrated that many cultures classify living things
in a hierarchy centered on what we call the genus level, which provides more knowledge than other levels,
both lower and higher (Berlin, Breedlove, & Raven, 1973).

Why is it that the basic level is privileged? Generally, the theory is that concepts at the basic level
provide “maximum information with the least cognitive effort” (Rosch, 1978). This hypothesis has been lent
experimental support by the work of Tversky and colleagues (1984), who showed that goal- and part-related
information, the kind most informative for the use of the object, is usually encoded at the basic level, while
object attributes are usually found at a lower, more specific level. As the reader has no doubt noticed, the
basic level has many similarities with the intermediate level. The argument here is the same as for narrative
representation: the basic level is preferred because it is the level where one finds the right amount of collation
and smoothing of descriptions, in other words, the right amount of abstraction. The Goldilocks hypothesis
can cover the basic level in the same way it covers features at the intermediate level: they are preferred for
identification and categorization because they maximize the mutual information for the class.

5 Contributions

Here we articulate what we believe to be the contributions of our work.
First, we identified the novice-to-expert shift, from retrieval by mere-appearance to retrieval by structural

congruence, as a yet unmodelled aspect of human performance.
Second, we hypothesized that we can account for the novice-to-expert shift parsimoniously by way of a

single cognitive mechanism, that of searching sources in memory for relevant features. With this in mind we
demonstrated a model based on that mechanism that varied the size of the descriptive features permitted
to influence the judgment of similarity. Using small features inclined the model to novice-like performance;
using features of intermediate size inclined the model to expert-like performance.

Third, we considered how these results apply to the nature of the novice-to-expert shift in people. We
concluded that the novice-to-expert shift corresponds not only to the development of procedures that identify
maximally informative features, but also to the development of more uniform representational schemes, as
has been suggested in previous work.

Fourth, we considered how the insight of intermediate features could be realized in a more practical
retrieval model, or integrated into existing models of analogical retrieval. We concluded that integrating
their use into current and future retrieval models would require a process for learning the most informative
features.

Fifth, and finally, we introduced the Goldilocks hypothesis, which says that for identification in general,
features of an intermediate size are best because they, on average, maximize the mutual information. We call
it the Goldilocks hypothesis because it reminds us of the fairy tale, Goldilocks and the Three Bears, in which
Goldilocks found herself most satisfied with porridge that was neither too hot nor too cold. We noted that the
Goldilocks hypothesis can be supported by both our work in precedent retrieval and the work of Ullman and
his colleagues in the world of object recognition. We further observed that the Goldilocks hypothesis might
be supported by work in other cognitive domains, specifically narrative memory and object categorization.
Such examples suggest to us that the Goldilocks hypothesis contains a powerful computational idea that is
exploited in a broad range of human cognitive faculties.

19



M.A. Finlayson & P.H. Winston The Goldilocks Hypothesis

6 Acknowledgments

Thanks to all the members of our research group for their assistance and constructive critiques, especially
Jake Beal, Keith Bonawitz, Harold Cooper, Ian Eslick, Roger Hurwitz, Paul Keel, Vikash Mansinghka, John
Mallery, Diana Moore, Sajit Rao, and Mark Seifter. Thanks to Ken Forbus for providing the Karla the
Hawk dataset and his helpful advice, as well as to his Qualitative Reasoning Group at Northwestern for their
comments and suggestions. Thanks to Liz Bonawitz and Amy Perfors of the Tenenbaum laboratory in the
MIT Department of Brain and Cognitive Sciences for their help and advice. Thanks to Arthi Murugesan
for preparing the code which generated Figures 7 and 8. Portions of this work appeared as a poster entitled
“A Model of Analogical Retrieval using Intermediate Features” at the Twenty-Sixth Annual Meeting of
the Cognitive Science Society, 2004, in Chicago, Illinois, and as a paper entitled “Intermediate Features
and Informational-level Constraint on Analogical Retrieval”at the Twenty-Seventh Annual Meeting of the
Cognitive Science Society, 2005, in Stresa, Italy. This work is supported in part by the National Science
Foundation under Grant Numbers 0218861 and IIS-0413206.

20



M.A. Finlayson & P.H. Winston The Goldilocks Hypothesis

References

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may increase with expertise.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 483-495.

Alker, H., Lehnert, W., & Schneider, D. (1985). Two reinterpretations of toynbee’s jesus: Explorations in
computational hermeneutics. In G. Tonfoni (Ed.), Artificial intelligence and text understanding (p.
29-94). Quaderni di Ricerca Linguistica.

Berlin, B., Breedlove, D. E., & Raven, P. H. (1973). General principles of classification and nomenclature
in folk biology. American Anthropologist, 75, 214-242.

Blessing, S. B., & Ross, B. H. (1996). Content effects in problem categorization and problem solving. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 22 (3), 792-810.

Brown, A. L. (1989). Analogical learning and transfer: What develops? In S. Vosniadou & A. Ortony
(Eds.), Similarity and analogical reasoning (p. 369-412). Cambridge: Cambridge University Press.

Brown, N. R., & Schopflocher, D. (1998). Event cueing, event clusters, and the temporal distribution of
autobiographical memories. Applied Cognitive Psychology, 12, 305-319.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55-81.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems

by experts and novices. Cognitive Science, 5, 121-152.
Ciment, J. (1999). Encyclopedia of conflicts since world war ii. M.E. Sharpe.
Falkenhainer, B., Forbus, K. D., & Gentner, D. (1986). The structure-mapping engine. In Fifth meeting of

the american association for artificial intelligence (p. 272-277).
Faries, J. M., & Reiser, B. J. (1988). Access and use of previous solutions in a problem-solving situation. In

Annual conference of the cognitive science society (Vol. 10, p. 433-439). Montreal: Lawrence Erlbaum
and Associates.

Forbus, K. D., Gentner, D., & Law, K. (1994). Mac/fac: A model of similarity-based retrieval. Cognitive
Science, 19, 141-205.

French, R. M. (2002). The computational modeling of analogy-making. Trends in Cognitive Sciences, 6,
200-205.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155-170.
Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou & A. Ortony (Eds.), Similarity

and analogical reasoning (p. 199-241). London: Cambridge University Press.
Gentner, D., & Landers, R. (1985). Analogical reminding: A good match is hard to find. In International

conference on systems, man and cybernetics (p. 607-613). Tucson, AZ: IEEE.
Gentner, D., Rattermann, M. J., & Forbus, K. D. (1993). The roles of similarity in transfer: Separating

retrievability from inferential soundness. Cognitive Psychology, 25 (4), 524-575.
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355.
Gick, M. L., & Holyoak, K. J. (1983). Scheme induction and analogical transfer. Cognitive Psychology, 15,

1-38.
Hall, R. P. (1989). Computational approaches to analogical reasoning: a comparative analysis. Artificial

Intelligence, 39, 39-120.
Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory and

Cognition, 15, 332-340.
Jackendoff, R. (1983). Semantics and cognition. MIT Press.
Keane, M. T., Ledgeway, T., & Duff, S. (1994). Constraints on analogical mapping: A comparison of three

models. Cognitive Science, 18, 387-438.
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago Press.
Lehnert, W. (1981). Plot units and narrative summarization. Cognitive Science, 4, 293-331.
Lowe, D. G. (2000). Towards a computational model for object recognition in it cortex. In S.-W. Lee,

H. Bulthoff, & T. Poggio (Eds.), Workshop on biologically motivated computer vision (Vol. 1811).
Springer-Verlag.

Morris, M., & Murphy, G. L. (1990). Convering operations on a basic level in event taxonomies. Memory
and Cognition, 18, 107-118.

21



M.A. Finlayson & P.H. Winston The Goldilocks Hypothesis

Murphy, G. L. (1991). Parts in object concepts: Experiments with artificial categories. Memory and
Cognition, 19, 423-428.

Murphy, G. L., & Smith, E. E. (1982). Basic level superiority in picture categorization. Journal of Verbal
Learning and Verbal Behavior, 21, 1-20.

Novick, L. R. (1988). Analogical transfer, problem similarity, and expertise. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, 510-520.

Obeid, M., Jedynak, B., & Baoudi, M. (2001). Image indexing and retrieval using intermediate features.
In Association for computing machinery international conference on multimedia (Vol. 9, p. 531-533).
Ottawa: Association for Computing Machinery.

Palmer, S. E. (1989). Levels of description in informatino-processing theories of analogy. In S. Vosniadou &
A. Ortony (Eds.), Similarity and analogical reasoning (p. 332-345). Cambridge: Cambridge University
Press.

Palmeri, T. J., Wong, A. C.-N., & Gauthier, I. (2004). Computational approaches to the development of
perceptual expertise. Trends in Cognitive Sciences, 8, 378-386.

Rattermann, M. J., & Gentner, D. (1987). Analogy and similarity: Determinants of accessibility and
inferential soundness. In Annual conference of the cognitive science society (Vol. 9, p. 23-35). Lawrence
Erlbaum Associates.

Reed, S. K., Dempster, A., & Ettinger, M. (1985). Usefulness of analogous solutions for solving algebra
word problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 106-125.

Reed, S. K., Ernst, G. W., & Banerji, R. (1974). The role of analogy in transfer between similar problem
states. Cognitive Psychology, 6, 436-450.

Reiser, B. J., Black, J. B., & Abelson, R. P. (1985). Knowledge structures in the organization and retrieval
of autobiographical memories. Cognitive Psychology, 17, 89-137.

Reiser, B. J., Black, J. B., & Lehnert, W. G. (1985). Thematic knowledge structures in the understanding
and generation of narratives. Discourse Processes, 8, 357-389.

Rifkin, A. (1985). Evidence for a basic level in event taxonomies. Memory and Cognition, 13, 538-556.
Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization

(p. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.
Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill. Cognitive Psychology, 16,

371-416.
Ross, B. H. (1987). This is like that: The use of earlier problems and the separation of similarity effects.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 629-639.
Sato, K. (2002). Changes in the temporal organization of autobiographical memories. Psychological Reports,

91, 1074-1078.
Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge structure in expert and

novice mathematical problem solvers. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 8, 484-494.

Schunn, C. D., & Dunbar, K. (1996). Priming, analogy, and awareness in complex reasoning. Memory and
Cognition, 24, 271-284.

Seifert, C. M., Abelson, R. P., McKoon, G., & Ratcliff, R. (1986). Memory connections between thematically
similar episodes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12, 220-231.

Serre, T., Riesenhuber, M., Louie, J., & Poggio, T. (2002). On the role of object-specific features for real
world object recognition in biological vision. In H. Bulthoff, S.-W. Lee, T. Poggio, & C. Wallraven
(Eds.), Second workshop on biologically motivated computer vision; in lecture nodes in computer science
(Vol. 2525, p. 387-397). Springer-Verlag.

Shafto, P., & Coley, J. D. (2003). Development of categorization and reasoning in the natural world: Novices
to experts, naive similarity to ecological knowledge. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 29, 641-649.

Shneiderman, B. (1977). Measuring computer program quality and comprehension. International Journal
of Man-Machine Studies, 9, 465-478.

22



M.A. Finlayson & P.H. Winston The Goldilocks Hypothesis

Stanhope, N., Cohen, G., & Conway, M. (1993). Very long-term retention of a novel. Applied Cognitive
Psychology, 7, 239-256.

Thagard, P., Holyoak, K. J., Nelson, G., & Gochfeld, D. (1990). Analog retrieval by constraint satisfaction.
Artificial Intelligence, 46, 259-310.

Thorndyke, P. W. (1977). Cognitive structures in comprehension and memory of narrative discourse.
Cognitive Psychology, 9, 77-110.

Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology:
General, 113, 169-193.

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use
in classification. Nature Neuroscience, 5, 682-687.

Vaina, L., & Greenblatt, R. (1979). The use of thread memory in amnesia aphasia and concept learning
(Working Paper No. No. 195). MIT Artificial Intelligence Laboratory.

Wharton, C. M., Holyoak, K. J., Downing, P. E., Lange, T. E., Wickens, T. D., & Melz, E. R. (1994). Below
the surface: Analogical similarity and retrieval competition in reminding. Cognitive Psychology, 26,
64-101.

Winston, P. H. (1980). Learning and reasoning by analogy. Communications of the ACM, 23, 689-703.
Winston, P. H. (1982). Learning new principles from precedents and exercises. Artificial Intelligence, 19,

321-350.

23



M.A. Finlayson & P.H. Winston The Goldilocks Hypothesis

A Appendix: Implementation Details

In this section we explain our model in enough detail to allow its reimplementation. We begin by describing
our representational conventions, and discuss how we break descriptions into feature sets. We review the
actual matching algorithm, the heart of the model, and analyze its computational complexity. Finally, we
give examples of calculations of node-to-node semantic similarity scores and feature-to-feature match scores.

A.1 Representations

The actual data structures on which the model algorithm is run use a representation that is quite similar
to others used in research on analogy (Thagard et al., 1990). The representation encompasses both episodic
memory (implemented as a graph), and a type of semantic memory (implemented as frames attached to
nodes in the graph).

As is often found in graph representations such as these, nodes in the graph represent objects or concepts,
and the edges that connect the nodes represent a simple relationship between concepts or objects. In our
representation, we have three edge types: subject, object or element. These names can be motivated by
the examples in Figure 11, where the 11(a) represents the sentence “Amy loves Bob”; because the node
representing Amy is the subject of the verb Loves, the link connecting them is of the subject. Similarly for
Bob as the object of the sentence. The graph in 11(b) shows an example of the use of the element edge type,
where the graph is representing the concept “A and B are members of C.” This sort of construction is used
to collect similar nodes into collections where subject and object labels don’t make sense. As a convention,
we say that particular edges belong or originate from only one node. This is identical to saying that the
edge is unidirectional. So in 11(a), the subject and object edges belong to the Loves node, and in 11(b), the
element edges belong to the C node.

R

T

loves-1

Bob-1T Amy-1

S

T

C-1

B-1T A-1

element elementobjectsubject

(a) (b)

Figure 11: Representations of (a) the sentence “Amy loves Bob,” and (b) the concept “A and B are members
of C.” Note that each node has a type that is indicated by a letter inside of the node.

We have four different node types that are loosely based on the linguistic function-argument structure
presented in Jackendoff (Jackendoff, 1983), and are distinguished by how many and what type of edges
originate on that node. The simplest sort of node has no originating edges–we call this a Thing node, which
usually represents an object or simple concept. Examples include ‘dog’, ‘boy’, ‘man’, ‘rock’, ‘tree’, etc.

The next simplest node is one that originates only one edge (by convention, a subject edge; no node
originates only an object edge). These nodes usually indicate something like a preposition, such as “on the
table”, or “top of the tree.” Because the meaning of these nodes derives in some sense from their subjects,
we call these nodes Derivatives, and these examples are illustrated in Figure 12.
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on-1

table-1

(a)

D
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at-1

window-1

(b)

D

T

top-1

tree-1

(c)

Figure 12: Representations of the phrases (a) “on the table,” (b) “at the window,” and (c) “top of the tree.”

Nodes that originate both a subject and object link are called Relations and represent relations such as
Causes or Loves, as was shown in 11(a). Finally, there are nodes, called Sequences, from which originate
one or more element links (with no subject or object links). These represent collections of events or locations,
and can be treated as ordered or unordered. An example is shown in 11(b). A summary of the possible node
types and their characteristics is shown in Table 2.

Type subject? object? elements? order Examples
Thing No No No 0 boy, tree, dog, rock

Derivative Yes No No max(children)+1 in, out, to, from
Relation Yes Yes No max(children)+1 is, loves, before, causes
Sequence No No Yes max(children)+1 paths, conjunction, scenarios

Table 2: Ontology of node types

We follow conventions listed in (Gentner, 1983) in assigning an order to nodes, which can be thought of
as a node’s “height” in the graph. Thing nodes are always zero-order. Because edges always originate at
one node and ‘end’ at another node, we can call the originating node the parent, and the ending node the
child, at least with respect to that edge, and define the parent’s order to be one more than the maximum of
the order of its children. Examples of nodes of different graph structures and the orders of the highest node
are shown in Figure 13.

01

0

2

34

5

3

Figure 13: A graph where the orders of the nodes are numbered.

Our representation also incorporates a rough model of semantic memory called thread memory (Vaina &
Greenblatt, 1979). This memory is implemented by attaching to each node in the episodic graph (described
above) a collection of ordered lists (threads) of hierarchy terms to which the object or concept represented by
the node belongs. In other words, each object maintains one or more sequences of class membership strings,
and each such sequence is called a thread. For example, a person might be described with the following
thread.

ambassador--diplomat--politician--human--primate--animal--thing

This indicates that the most specific class of which this node is a member is the ambassador class, and
the most general class the thing class. We could compare this description with that of another person, say
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a fireman, who might be described as in the following thread.

fireman--rescuer--human--primate--animal--thing

When comparing the two, we would find that they match on the last four classes, but not the others. As
a representational convenience, predicates applying to an object or relation, such as “red” or “tall”, are also
included on threads. By comparing threads we can obtain a rough measure of semantic similarity. This is
discussed in more detail in Section A.2

There are few additional representational conventions. Our representation is intended to emphasize the
metaphorical nature of human language, in that often we can cast verbs as relations between an object and
a path (Lakoff & Johnson, 1980). This form of representation is also inspired by Jackendoff’s descriptions
of trajectories. A path in our representation is a Sequence node with any number of Derivative nodes as
its elements, where the subgraphs headed by the Derivatives represent proposition phrases. An example
is shown in Figure 14. We use these constructions for all motion verbs as well as those verbs that can be
metaphorically related to motion. To help capture the spirit of higher-order nodes later in this work, we
conventionally assume that path constructions are of order zero.

R

S

fly-1

path-1T bird-1

D via-1

D in-1

T France-1

D from-1

D at-1

T NorthAfrica-1

D to-1

D at-1

T Norway-1

Figure 14: Representation of the sentence with paths: “The bird flew from North Africa to Norway via
France.”

Finally, as a last convention, when constructing graphs we add nodes we call Trajectory Ladders and
Trajectory Spaces, both of which are Sequence nodes. Each description contains a single Trajectory Space
node, a node which is not included in the node counts, nor are used for feature decomposition; rather,
they serve as a handle for a description. The elements of a Trajectory Space Sequence node are Trajectory
Ladder nodes, also Sequences. The Trajectory Ladders have as their elements particular actions or events.
The position of these nodes in a graph description are illustrated in Figure 15. Causal and temporal relations
are placed between Trajectory Ladders, not just between the elements of the ladders. The reason for this
can be seen in Figure 15, where the conjunction of two events is the result of the first events.

We made use of the so-called Karla the Hawk dataset in Experiment 3. Doing this with our implemen-
tation required us to translate the Karla the Hawk representation into our own representation. A detailed
overview of the representation used in the Karla the Hawk dataset can be found in (Gentner et al., 1993).
Object nodes in the Karla the Hawk representation were straightforwardly translated to Thing nodes, but
predicates—description nodes likes “red” or “tall”—were incorporated as thread elements on the appropriate
Thing. Relations were straightforwardly translated, and some additional representational structure, such as
Trajectory Ladder and Trajectory Spaces, were added as our representational conventions dictate. This is
important because of its effect on node count comparisons—overall node counts for the Karla the Hawk
representations are for the translated representations (on which our experiments were run), not the original
representations.
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Figure 15: Representation of the scenario “The boy ran to the rock and hid because the girl threatened
him.”

A.2 Retrieval Algorithm

This section contains a detailed algorithmic description of how we locate features from the target in a source,
and how we assign that source a retrieval score. An overview of the retrieval model can be found above in
Section 2.1.

The basic outline of the algorithm is as follows: We first break both descriptions into fragments. Each
feature on the target list is compared sequentially with every feature on the source list, producing a set of
scores. The feature pair with the highest score is considered a match, and if the score of that match passes
the scoring condition7 those features are taken off both lists and the match score is added to the total source
score. The next feature on the target list is then matched in the same manner, until all features on the
source list have been matched with one feature from the target list or one of the two lists is exhausted.

A key issue in our model, and in the mechanism in general, is how we break our graph representations
into features. In our current implementation, a feature is a complete sub-graph of the whole representation.
The feature has a single head node and includes that node and all of its descendants. Thus, in any graph,
there will be a feature corresponding to each node in the representation. As can be seen, the general size of
the features runs from small (e.g., an individual object, such as “boy”) to medium (such as a path), to large
(such as the whole-graph-subsuming causes relation).

7Defined as falling between the upper and lower thresholds.
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Algorithm 1: The main retrieval algorithm.
Retrieve(source, target)
Input: A target description, target (a graph), and a source description, source (also a
graph).
Output: A real number, scoretotal, indicating the retrieval strength for this source relative
to this target.
(1) featurestarget ← List-All-Unique-Nodes(target)
(2) featuressource ← List-All-Unique-Nodes(source)
(3) scoretotal ← 0
(4) foreach nodetarget ∈ featurestarget

(5) scoremax ← 0
(6) foreach nodesource ∈ featuressource

(7) score← Compare-Subgraph(nodesource, nodetarget)
(8) if score > scoremax

(9) nodemax ← nodesource

(10) scoremax ← score
(11) if Scoring-Condition(scoremax)
(12) Remove-Element(nodemax, featuressource)
(13) scoretotal ← scoretotal + scoremax

(14) return scoretotal

Algorithm 2: Algorithm for comparing two features.
Compare-Subgraph(nodetarget, nodesource)
Input: Two nodes to be compared.
Output: A real number indicating how well the two nodes and all their children match.
(1) if IncompatibleTypes?(nodetarget, nodesource) then return 0
(2) score ← Compare-Nodes(nodetarget, nodesource)
(3) if No-Children?(nodetarget) or No-Children?(nodesource) then return score
(4) childrentarget ← Get-Children(nodetarget)
(5) childrensource ← Get-Children(nodesource)
(6) combinations← Enumerate-All-Combinations(childrentarget, childrensource)
(7) scoremax ← 0
(8) foreach combination ∈ combinations
(9) scorecombo ← 0
(10) foreach pair ∈ combination
(11) childnodetarget ← First-Element(pair)
(12) childnodesource ← Second-Element(pair)
(13) scorecombo ← scorecombo + Compare-Subgraph(nodesource, nodetarget)
(14) if scorecombo > scoremax

(15) scoremax ← scorecombo

(16) return score + scoremax
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Algorithm 3: Comparison function for comparing individual nodes.
Compare-Nodes(nodetarget, nodesource)
Input: Two nodes to be compared.
Output: A real number between 0 and 1 that reflects the ratio of the union of classes on
the two nodes to the intersection of class on the two nodes.
(1) C1 ← set of all thread elements on n1

(2) C2 ← set of all thread elements on n2

(3) U ← Union(C1, C2)
(4) I ← Intersection(C1, C2)
(5) if |U | = 0 then return 0
(6) else return |I|/|U |

Algorithm 4: Scoring function for Retrieval Algorithm.
Scoring-Condition(score)
Input: A real number, score, and two global variables, the lower and upper thresholds,
Tlower and Tupper.
Output: true if the score is between the thresholds, TL; false otherwise.
(1) if Tlower < score AND score < Tupper then return true
(2) else return false

To produce a score between two features, we first match up the root nodes of the features. If the two
nodes are of the the same type (either Thing, Relation, Sequence, or Derivative), we count the number of
thread elements shared between those two nodes, and then repeat the process on the nodes’ children, adding
the children’s scores to the target, and so on recursively down the tree. If at any point two nodes do not
share the same type, the count for those two nodes returns zero. All possible pairings of the children are
produced by Algorithm Enumerate-All-Combinations, and the loops choose the set of children matches
that maximizes the score.

By comparing threads we can obtain a rough measure of semantic similarity. We do this as shown in
Algorithm 3. This algorithm divides the number of thread elements in common between two nodes by the
number of unique thread elements on both nodes to give a measure of semantic similarity between 0 and 1.
If two nodes share no thread elements, they will have a score of 0. If they share all their thread elements,
they will get a score of 1. Examples of this calculation are given in Figure 17.

A.3 Computational Complexity

The order of our algorithm is O(n2) in the maximum number of nodes n of the target and source, which was
concluded as follows.

We will proceed by first calculating the time required to precompute the results of Algorithms 2 (Compare-
Subgraph) and 3 (Compare-Nodes). This makes the calculation of the complexity of overall algorithm
easier, since the Compare-Subgraph calls itself in a recursive fashion. By considering that the results are
precomputed and cached, we can then consider the call to Compare-Subgraph in Algorithm 1 (Retrieve)
as a constant, and merely add the complexity of the precomputation directly to the complexity of the main
Retrieve algorithm.

Let n be the number of nodes in the target or the source, whichever has the most nodes. To precompute
Compare-Nodes, it would have to be called n2 times, once for each possible pair of nodes from the source
and target. Let d be the maximum number of thread elements on any node. Since the union and intersection
operations are linear in the number of thread elements of the nodes, i.e., O(d), the contribution of Algorithm 3
is n2d.

To precompute Compare-Subgraph, it would also have to be called n2 times. Enumerate-All-
Combinations returns a set with all possible combinations (as opposed to permutations) of the children
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of the two nodes. Let k be the maximum number of children of any node found in either the target or
source. Each pair of nodes has at most k! sets of combinations of their children, each of which have at most
k pairs of children in them, so Enumerate-All-Combinations has running time of at most O(k!k). It
is called once for each call of Compare-Subgraph for a contribution of n2k!k. The loop at line (8) of
Compare-Subgraph is called k! times, and the loop at line (10) is called k times, for a total contribution
of n2k!k, which, when added to n2k!k, does not increase the order of the complexity. Thus the total time to
precompute Compare-Subgraph is on the order of n2k!k.

Now we consider the main algorithm, Retrieve (Algorithm 1). Lines (1) and (2) together have contri-
bution of n. The loops at (4) and (6) are run at most n times each, for a total contribution of this nested
loop of n2. We have considered Compare-Subgraph to have been precomputed, so it’s contribution is
constant. Furthermore, the scoring algorithm, Algorithms 4 is constant time. So the contribution of this
topmost algorithm is n + n2, if the other algorithms are considered to have been precomputed. Adding up
the contributions of all the precomputations and the main algorithm, we have:

n + (1 + k!k + d)n2 (1)

We can consider k, the maximum number of children of any node, a constant term because it does not
vary with n, and so drops out in the limit. We can also consider d, the maximum number of thread elements,
a constant for the same reason. Thus the worst case running time of the Retrieve algorithm is O(n2) for
a single source and target.

A.4 Calculating Match Scores

Because the calculation match score, done in the Compare-Subgraph algorithm using the Compare-
Nodes algorithm, is the central to the operation of the model, here we give a number of examples of
calculations so the reader can see how this is roughly analogous to the ‘merit’ or ‘informativeness’ of the
target’s feature relative to the source. In Figure 16, we show examples of comparisons of individual nodes.
These scores are then used in Figure 17 to calculate match scores between features.
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Figure 16: Examples of Node-Node Semantic Similarities as measured by the Compare-Nodes Algorithm
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Figure 17: Examples of matches between features of various sizes and semantics, and the scores they produce.
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