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In the Adaptive Character of Thought (ACT-R) theory,
complex cognition arises from an interaction of procedural
and declarative knowledge. Procedural knowledge is rep-
resented in units called production rules, and declarative
knowledge is represented in units called chunks. The in-
dividual units are created by simple encodings of objects
in the environment (chunks) or simple encodings of trans-
Jormations in the environment (production rules). A great
many such knowledge units underlie human cognition.
From this large database, the appropriate units are se-
lected for a particular context by activation processes that
are tuned to the statistical structure of the environment.
According to the ACT-R theory, the power of human cog-
nition depends on the amount of knowledge encoded and
the effective deployment of the encoded knowledge.

he designation of our species as homo sapiens re-

flects the fact that there is something special about

human cognition—that it achieves a kind of intel-
ligence not even approximated in other species. One can
point to marks of that intelligence in many domains.
Much of my research has been in the area of mathematics
and computer programming, fields in which the capacity
to come up with abstract solutions to problems is one
ability that is frequently cited with almost mystical awe.
A good example of this is the ability to write recgrsive
programs.

Consider writing a function to calculate the factorial
of a number. The factorial of a number can be described
to someone as the result you get when you multiply all
the positive integers up to that number. For instance,

factorial(5) = 5 X 4 X3 X2 X 1 =120

In addition (it might appear by arbitrary convention), the
factorial of zero is defined to be 1. In writing a recursive
program to calculate the factorial for any number N, one
defines factorial in terms of itself. Below is what such a
program might look like:

factorial(N) = 1
= factorial(N—1) X N

if N=0
if N> 0.
The first part of the specification, factorial(0) = 1, is just
stating part of the definition of factorial. But the second

recursive specification seems mysterious to many and ap-
pears all the more mysterious that anyone can go from

the concrete illustration to such an abstract statement. It
certainly seems like the kind of cognitive act that we are
unlikely to see from any other species.

We have studied extensively how people write re-
cursive programs (e.g., Anderson, Farrell, & Sauers, 1984;
Pirolli & Anderson, 1985). To test our understanding of
the process, we have developed computer simulations that
are themselves capable of writing recursive programs in
the same way humans do. Underlying this skill are about
500 knowledge units called production rules. For instance,
one of these production rules for programming recursion,
which might apply in the midst of the problem solving,
is

IF the goal is to identify the recursive relationship in a
function with a number argument
THEN set as subgoals to
1. Find the value of the function for some N
2. Find the value of the function for N—1
3. Try to identify the relationship between the two
answers.

Thus, in the case above, this might lead to finding that
factorial(5) = 120 (Step 1), factorial(4) = 24 (Step 2), and
that factorial (V) = factorial (N—1) X N (Step 3).

We (e.g., Anderson, Boyle, Corbett, & Lewis, 1990;
Anderson, Corbett, Koedinger, & Pelletier, 1995; Ander-
son & Reiser, 1985) have created computer-based in-
structional systems, called intelligent tutors, for teaching
cognitive skills based on this kind of production-rule
analysis. By basing instruction on such rules, we have
been able to increase students’ rate of learning by a factor
of 3. Moreover, within our tutors we have been able to
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Figure 1
Mean Actual Error Rate and Expected Error Rate Across
Successive Rule Applications
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track the learning of such rules and have found that they '

improve gradually with practice, as illustrated in Figure
1. Our evidence indicates that underlying the complex,
mystical skill of recursive programming is about 500 rules
like the one above, and that each rule follows a simple
learning curve like Figure 1.

This illustrates the major claim of this articlé:

All that there is to intelligence is the simple accrual and
tuning of many small units of knowledge that in total
produce complex cognition. The whole is no more than
the sum of its parts, but it has a lot of parts.

The credibility of this claim has to turn on whether
we can establish in detail how the claim is realized in
specific instances of complex cognition. The goal of the
ACT theory, which is the topic of this article, has been
to establish the details of this claim. It has been concerned
with three principal issues: How are these units of knowl-
edge represented, how are they acquired, and how are
they deployed in cognition?

The ACT theory has origins in the human associative
memory (HAM) theory of human memory (Anderson &
Bower, 1973), which attempted to develop a theory of
how memories were represented and how those repre-
sentations mediated behavior that was observed in mem-
ory experiments. It became apparent that this theory only
dealt with some aspects of knowledge; Anderson (1976)

proposed a distinction between declarative knowledge,
which HAM dealt with, and procedural knowledge, which
HAM did not deal with. Borrowing ideas from Newell
(1972, 1973), it was proposed that procedural knowledge
was implemented by production rules. A production-sys-
tem model called ACTE was proposed to embody this
joint procedural-declarative theory. After 7 years of
working with variants of that system, we were able to
develop a theory called ACT* (Anderson, 1983) that em-
bodied a set of neurally plausible assumptions about how
such a system might be implemented and also psycho-
logically plausible assumptions about how production
rules might be acquired. That system remained with us
for 10 years, but a new system called ACT-R was then
put forward by Anderson (1993b). Reflecting technical
developments in the past decade, this system now serves
as a computer simulation tool for a small research com-
munity. The key insight of this version of the system is
that the acquisition and deployment processes are tuned
to give adaptive performance given the statistical structure
of the environment. It is the ACT-R system that we will
describe.

Representational Assumptions

Declarative and procedural knowledge are intimately
connected in the ACT-R theory. Production rules embody
procedural knowledge, and their conditions and actions
are defined in terms of declarative structures. A specific
production rule can only apply when that rule’s condi-
tions are satisfied by the knowledge currently available
in declarative memory. The actions that a production
rule can take include creating new declarative structures.

Declarative knowledge in ACT-R is represented in
terms of chunks (Miller, 1956; Servan-Schreiber, 1991)
that are schema-like structures, consisting of an isa pointer
specifying their category and some number of additional
pointers encoding their contents. Figure 2 is a graphical
display of a chunk encoding the addition fact that 3 + 4
= 7. This chunk can also be represented textually:

Figure 2
Network Representation of an ACT-R Chunk

Addition-fact
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fact3+4
isa addition-fact
addend! three
addend2 four
sum seven

Procedural knowledge, such as mathematical prob-
lem-solving skill, is represented by productions. Produc-
tion rules in ACT-R respond to the existence of specific
goals and often involve the creation of subgoals. For in-
stance, suppose a child was at the point illustrated below
in the solution of a multicolumn addition problem:

531
+248
9

Focused on the tens column, the following production
rule might apply from the simulation of multicolumn
addition (Anderson, 1993b):

IF the goal is to add »1 and #2 in a column
and nl + n2 = n3
THEN set as a subgoal to write #3 in that column

This production rule specifies in its condition the goal of
working on the tens column and involves a retrieval of a
declarative chunk like the one illustrated in Figure 2. In
its action, it creates a subgoal that might involve things
like processing a carry. The subgoal structure assumed
in the ACT-R production system imposes this strong ab-
stract, hierarchical structure on behavior. As argued else-
where (Anderson, 1993a), this abstract, hierarchical
structure is an important part of what sets human cog-
nition apart from that of other species.

Much of the recent effort in the ACT-R theory has
gone into detailed analyses of specific problem-solving
tasks. One of these involves equation solving by college
students (e.g., Anderson, Reder, & Lebiere, in press). We
have collected data on how they scan equations, including
the amount of time spent on each symbol in the equation.’
Figure 3 presents a detailed simulation of the solution of
equations like X + 4 + 3 = 13, plus the average scanning
times of participants solving problems of this form (mixed
in with many other types of equations in the same ex-
periment). As can be seen in Parts a—c of that figure, the
first three symbols are processed to create a chunk struc-
ture of the form x + 4. In the model, there is one pro-
duction responsible for processing each type of symbol.
The actual times for the first three symbols are given in
Parts a-c of Figure 3. They are on the order of 400 mil-
liseconds, which we take as representing approximately
300 milliseconds to implement the scanning and encoding
of the symbol and 100 milliseconds for the production
to create the augmentation to the representation.?

The next symbol to be encoded, the +, takes about
500 milliseconds to process in Part d. As can be seen, it
involves two productions, one to create a higher level
chunk structure and another to encode the plus into that
structure. The extra 100 milliseconds (over the encoding

time for previous symbols) reflect the time for the extra
production. The next symbol to be encoded (the 3) takes
approximately 550 milliseconds to process (see Part e of
Figure 3), reflecting again two productions but this time
also retrieval of the fact 4 + 3 = 7. The mental represen-
tation of the equation at this point is collapsed into x +
7. The = sign is next processed in Part f of Figure 3. It
takes a particularly short time. We think this reflects the
strategy of some participants of just skipping over that
symbol. The final symbol comes in (see Part g of Figure
3) and leads to a long latency reflecting seven productions
that need to apply to transform the equation and the
execution of the motor response of typing the number
key.

The example in Figure 3 is supposed to reflect the
relative detail in which we have to analyze human cog-
nition in ACT-R to come up with faithful models. The
simulation is capable of solving the same problems as the
participants. It can actually interact with the same ex-
perimental software as the participants, execute the same
scanning actions, read the same computer screen, and
execute the same motor responses with very similar tim-
ing (Anderson, Matessa, & Douglass, 1995). When I say,
“The whole is no more than the sum of its parts but it
has a lot of parts,” these are the parts I have in mind.
These parts are the productions rules and the chunk
structures that represent long-term knowledge and the
evolving understanding of the problem.

Knowledge units like these are capable of giving rel-
atively accurate simulations of human behavior in tasks
such as these. However, the very success of such simu-
lations only makes salient the two other questions that
the ACT-R theory must address, which are how did the
prior knowledge (productions and long-term chunks)
come to exist in the first place and how is it, if the mind
is composed of a great many of these knowledge units,
that the appropriate ones usually come to mind in a par-
ticular problem-solving context? These are the questions
of knowledge acquisition and knowledge deployment.

Knowledge Acquisition

A theory of knowledge acquisition must address both the
issue of the origins of the chunks and of the origins of
production rules. Let us first consider the origin of
chunks. As the production rules in Figure 3 illustrate,
chunks can be created by the actions of production rules.
However, as we will see shortly, production rules originate
from the encodings of chunks. To avoid circularity in the
theory we also need an independent source for the origin
of the chunks. That independent source involves encoding
from the environment. Thus, in the terms of Anderson
and Bower (1973), ACT-R is fundamentally a sensation-

! This involves a scheme wherein participants must point at the
part of the equation that they want to read next.

2 Although our data strongly constrain the processing, there remain
a number of arbitrary decisions about how to represent the equation
that could have been made differently.
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alist theory in that its knowledge structures result from
environmental encodings.

We have only developed our ideas about environ-
mental encodings of knowledge with respect to the visual
modality (Anderson, Matessa, & Douglass, 1995). In this
area, it is assumed that the perceptual system has parsed
the visual array into objects and has associated a set of
features with each object. ACT-R can move its attention
over the visual array and recognize objects. We have
embedded within ACT-R a theory that might be seen as
a synthesis of the spotlight metaphor of Posner (1980),
the feature-synthesis model of Treisman (Treisman &
Sato, 1990), and the attentional model of Wolfe (1994).
Features within the spotlight can be synthesized into rec-
ognized objects. Once synthesized, the objects are then
available as chunks in ACT’s working memory for further
processing. In ACT-R the calls for shifts of attention are
controlled by explicit firings of production rules.

The outputs of the visual module are working mem-
ory elements called chunks in ACT-R. The following is
a potential chunk encoding of the letter H:

object
isa H
left-vertical  barl
right-vertical bar2
horizontal bar3

We assume that before the recognition of the object, these
features (the bars) are available as parts of an object but
that the object itself is not recognized. In general, we
assume that the system can respond to the appearance
of a feature anywhere in the visual field. However, the
system cannot respond to the conjunction of features that
define a pattern until it has moved its attention to that
part of the visual field and recognized the pattern of fea-
tures. Thus, there is a correspondence between this model
and the feature synthesis model of Treisman (Treisman
& Sato, 1990).

A basic assumption is that the process of recognizing
a visual pattern from a set of features is identical to the
process of categorizing an object given a set of features.
We have adapted the Anderson and Matessa (1992) ra-
tional analysis of categorization to provide a mechanism
for assigning a category (such as H) to a particular con-
figuration of features. This is the mechanism within
ACT-R for translating stimulus features from the envi-
ronment into chunks like the ones above that can be pro-
cessed by the higher level production system.

With the environmental origins of chunks specified,
we can now turn to the issue of the origins of production
rules. Production rules specify the transformations of
chunks, and we assume that they are encoded from
examples of such transformations in the environment.
Thus, a student might encounter the following example
in instruction:

3x+7
3x

13
6

and encode that the second structure is dependent on the
first. What the learner must do is find some mapping
between the two structures. The default assumption is
that identical structures directly map. In this case, it is
assumed the 3x in the first equation maps onto the 3x
in the second equation. This leaves the issue of how to
relate the 7 and 13 to the 6. ACT-R looks for some chunk
structure to make this mapping. In this case, it will find
a chunk encoding that 7 + 6 = 13. Completing the map-
ping ACT-R will form a production rule to map one
structure onto the other:

IF the goal is to solve an equation of the form
arg + nl = n3
and nl + n2 = n3

THEN make the goal to solve an equation
of the form arg = n2

This approach takes a very strong view on instruction.
This view is that one fundamentally learns to solve prob-
lems by mimicking examples of solutions. This is certainly
consistent with the substantial literature showing that ex-
amples are as good as or better than abstract instruction
that tells students what to do (e.g., Cheng, Holyoak, Nis-
bett, & Oliver, 1986; Fong, Krantz, & Nisbett, 1986; Reed
& Actor, 1991). Historically, learning by imitation was
given bad press as cognitive psychology broke away from
behaviorism (e.g., Fodor, Bever, & Garrett, 1974). How-
ever, these criticisms assumed a very impoverished com-
putational sense of what is meant by imitation.

It certainly is the case that abstract instruction does
have some effect on learning. There are two major func-
tions for abstract instruction in the ACT-R theory. On
the one hand, it can provide or make salient the right
chunks (such as 7 + 6 = 13 in the example above) that
are needed to bridge the transformations. It is basically
this that offers the sophistication to the kind of imitation
practiced in ACT-R. Second, instruction can take the form
of specifying a sequence of subgoals to solve a task (as
one finds in instruction manuals). In this case, assuming
the person already knows how to achieve such subgoals,
instruction offers the learner a way to create an example
of such a problem solution from which they can then
learn production rules like the one above.

The most striking thing about the ACT-R theory of
knowledge acquisition is how simple it is. One encodes
chunks from the environment and makes modest infer-
ences about the rules underlying the transformations in-
volved in examples of problem solving. There are no great
leaps of insight in which large bodies of knowledge are
reorganized. The theory implies that acquiring compe-
tence is very much a labor-intensive business in which
one must acquire one-by-one all the knowledge compo-
nents. This flies very much in the face of current edu-
cational fashion but. as Anderson, Reder, and Simon
(1995) have argued and documented, this educational
fashion is having a very deleterious effect on education.
We need to recognize and respect the effort that goes into
acquiring competence (Ericcson, Krampe, & Tesche-
Romer, 1993). However, it would be misrepresenting the
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matter to say that competence is just a matter of getting
all the knowledge units right. There is the very serious
matter of deploying the right units at the right time, which
brings us to the third aspect of the ACT-R theory.

Knowledge Deployment

The human mind must contain an enormous amount of
knowledge. Actually quantifying how much knowledge we
have is difficult (Landauer, 1986), but we have hundreds of
experiences every day, which implies millions of memories
over a lifetime. Estimates of the rules required to achieve
mathematical competence are in the thousands and to
achieve linguistic competence in the tens of thousands. All
this knowledge creates a serious problem. How does one
select the appropriate knowledge in a particular context?
Artificial intelligence systems have run into this problem
in serious ways. Expert systems gain power with increased
knowledge, but with increases in knowledge these systems
have become slower and slower to the point where they can
become ineffective. The question is how to quickly identify
the relevant knowledge.

Using the rational analysis developed in Anderson
(1990), ACT-R has developed a two-pass solution for
knowledge deployment. An initial parallel activation
process identifies the knowledge structures (chunks and
productions) that are most likely to be useful in the con-
text, and then those knowledge structures determine per-
formance as illustrated in our earlier example of the
equation solving. The equation solving can proceed
smoothly only because of this background activity of
making the relevant knowledge available for performance.

Rational analysis posits that knowledge is made
available according to its odds of being used in a particular
context. Activation processes implicitly perform a Bayes-
ian inference in calculating these odds. According to the
odds form of the basic Bayesian formula, the posterior
0dds of a hypothesis being true given some evidence are

PHI|E) _ P(H) _P(E|H)
P(H|E) PH) PE|H) -
Posterior-odds = Prior-odds+Likelihood-ratio
or, transformed into log terms,
Log(posterior odds)
= Log(Prior odds) + Log(Likelihood ratio).

Activation in ACT-R theory reflects its log posterior odds
of being appropriate in the current context. This is cal-
culated as a sum of the log odds that the item has been
useful in the past (log prior odds) plus an estimate that
it will be useful given the current context (log likelihood
ratio). Thus, the ACT-R claim is that the mind keeps
track of general usefulness and combines this with con-
textual appropriateness to make some inference about
what knowledge to make available in the current context.
The basic equation is

Activation-Level = Base-level + Contextual-Priming,

where activation-level reflects implicitly posterior odds,
base-level reflects prior odds, and the contextual-priming
reflects the likelihood ratio. We will illustrate this in three
domains—memory, categorization, and problem solving.

Memory

Schooler (1993) did an analysis of how history and context
combine to determine the relevance of particular infor-
mation. For instance, he looked at headlines in the New
York Times, noting how frequently particular items oc-
curred. In the time period he was considering, the word
AIDS had a 1.8% probability of appearing in a headline
on any particular day. However, if the word virus also
appeared in a headline, the probability of AIDS in that
day’s headlines rose to 75%. Similarly, he looked at care-
giver speech to children in the Child Language Data Ex-
change System (CHILDES; MacWhinney & Snow, 1990)
database. As an example from this database, he found
that there was only a 0.9% probability of the word play
occurring in any particular utterance. On the other hand,
if the word game also appeared in that utterance, the
probability of play increased to 45%. Basically, the pres-
ence of a high associate serves to increase the likelihood
ratio for that item.

Schooler (1993) also examined what factors deter-
mined the prior odds of an item. One factor was the time
since the word last occurred. As the time increased, the
odds went down of the word occurring in the next unit of
time. This temporal factor serves as the prior odds com-
ponent of the Bayesian formula. Schooler examined how
these two factors combined in his New York Times database
and the child-language database. The results are displayed
in Figure 4. Parts (a) and (b) show that both the presence
of a high associate (“strong context” in Figure 4) and the
time since last appearance (“retention” in Figure 4) affect
the probability of occurrence in the critical unit of time. It
might appear from parts (a) and (b) of Figure 4 that the
time factor has a larger effect in the presence of a high
associate. However, if one converts the odds scale to log
odds and the time scale to log time (see Anderson &
Schooler, 1991, for the justification) we get the functions in
parts (c) and (d) of Figure 4. Those figures show parallel
linear functions representing the additivity that we would
expect given the Bayesian log formula above.

The interesting question is whether human memory
is similarly sensitive to these factors. Schooler (1993) did
an experiment in which he asked participants to complete
word fragments, and he manipulated whether the frag-
ments were in the presence of a high associate or not as
well the time since the target word had been seen. The
data are displayed in log-log form in Figure 5. They once
again show parallel linear functions, implying that human
memory is combining information about prior odds and
likelihood ratio in the appropriate Bayesian fashion and
is making items available as a function of their posterior
probability.? Schooler’s demonstration is one of the clear-

3 These linear functions on a log scale imply that latency is a power
function of delay on an untransformed scale. See Rubin and Wenzel
(1994) for a discussion.
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Figure 4
Probability of a Word Occurring
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Note. (a) The probability of a word occurring in the next utterance as a function of the number of utterances since its last occurrence; (b) the probability of a word
occurring in the day's headlines as a function of the number of days since its last occurrence. Separate functions are plotted for probability in the presence of high and
low associates. Parts (c) and (d) replot this data probability to log odds and fime to log time. From “"Memory and the Statistical Structure of the Environment,”" by L. J.
Schooler, 1993, p. 58, unpublished doctoral dissertation. Reprinted by permission. CHILDES = Child Llanguage Data Exchange System.

\

est and most compelling demonstrations of the way the  activation. The momentary activation of chunk i in
mind tunes access to knowledge to reflect the statistical ACT-R is
structure of the environment. »

The statistical structure is represented in ACT-R by
making the activation of a chunk structure, like the one
in Figure 2, a function of activation received from the where B; is the base-level activation of chunk i, W; is the
various elements in the environment plus a base-level  weighting of contextual chunk J, and S;; is the strength

A =B+ X WS;,
i
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Figure 5
Llog Latency to Complete a Word Fragment as a Function
of Time Since the Word Was Seen
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Note. Data are plotted separately for fragment completion in the presence of
strong versus weak associates. From **Memory and the Statistical Structure of the

Environment,” by L. J. Schooler, 1993, p. 82, unpublished doctoral dissertation.
Reprinted by permission.

of association between chunk j and chunk i. For example,
if three and four were chunks in an addition problem,
they would be the contextual chunks (the j’s) priming the
availability of the relevant fact (the i) that 3 +4 = 7.

Categorization

Figure 6 plots some data from Gluck and Bower (1988)
in a way the data are not often represented. Gluck and
Bower had participants classify patients as having a rare
or a common disease given a set of symptoms. Gluck and
Bower manipulated what was in effect the likelihood ratio
of those symptoms given the disease. Figure 6a plots the
probability of the diagnosis of each disease as a fufiction
of the log likelihood ratio. It shows that participants are
sensitive to both base rates of the disease and to the like-
lihood ratio of those symptoms for that disease. There
has been considerable interest in the categorization lit-
erature in participants’ failure to respond to base rates,
but Figure 6 clearly illustrates that they are often very
sensitive. Figure 6b plots the same data with a transfor-
mation of the choice probability into log odds. It shows
that participants are perfectly tuned to the likelihood ra-
tios, showing slopes of 1.

Figure 7 shows the categorization network that we
have built into ACT-R to produce categorization data
such as those of Gluck and Bower (1988). Various features
in chunks spread activation to various categories accord-
ing to the likelihood of that feature given the category.
Categories have base-level activations to reflect their prior
frequencies. The resulting activations reflect the log pos-
terior probability of the category. The most active category
is chosen to classify the stimulus.

Figure 6
Probability of Diagnosis
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Note. (a) Probability of diagnosing a rare versus a common disease as a function
of the likelihood ratio of the symptoms. (b} The dependent measure transformed
into log odds. from **From Conditioning to Czregory Learning: An Adaptive Network
Model," by M. A. Gluck and G. H. Bower, 1588, Journal of Experimental Psychology:
General, 117. Copyright 1988 by the American Psychological Association. Adapted
by permission of the author.
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Figure 7
The Categorization Network Used to Classify Stimuli
L(FIC) O(C)
Diagnosticity Base Rates

Feature 1 ———————» Category 1

Feature 2 Category 2
Feature 3 Category 3
o Category 4
@)
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Feature n »Category m

Note. The stimulus features spread activation to various categories as a function
of their diagnosticity. LIF| C) are the log likelihood ratios and the OIC) are the log
prior odds of the categories.

L e .

Problem Solving

In her dissertation on strategy selection in problem solv-
ing, Lovett (1994) developed what she called the building
sticks task that is illustrated in Figure 8. Participants are
told that their task is to construct a target stick, and they
are given various sticks to work with. They can either
choose to start with a stick smaller than the target stick
and add further sticks to build up to the desired length
(called the undershoot operator) or to start with a stick
longer than the target and cut off pieces equal to various
sticks (called the overshoot operator). This task,is an
analog to the Luchins waterjug problem (Luchins,
1942). Participants show a strong tendency to select the
stick that gets them closest to their goal. In terms of pro-
duction rules, it is competition between two alternative
productions:

Overshoot

IF the goal is to solve the building sticks task
and there is no current stick
and there is a stick larger than the goal
THEN add the stick
and set a subgoal to subtract from it.

Undershoot

IF the goal is to solve the building sticks task
and there is no current stick
and there is a stick smaller than the goal
THEN add the stick
and set a subgoal to add to it.

e ..

Figure 8
Initial and Successor States in the Building Sticks Task
INITIAL STATE
desired N

current
building:
[m] &I c

UNDERSHOOT OVERSHOOT UNDERSHOOT

desired Nu— desired NN desired n——m
current [J current ] current [
building: building: building:

a [} m] il (=] [m] c

Note. from *'The Effects of History of Experience and Current Context on Problem
Solving,” by M. C. Lovett, 1994, p. 38, unpublished doctoral dissertation. Reprinted
by permission.

e .

Lovett (1994) gave participants experience such that
one of the two operators was more successful. Figure 9
shows their tendency to use the more successful operator
before and after this experience as a function of the bias
toward the operator (determined by how close the stick
gets one to the goal relative to the alternative sticks). There
are clear effects of both factors. Moreover, Lovett was

—
Figure 9

Probability of Using an Operator as a Function of the Bias
Towards That Operator Both Before and After
Experiencing Success With That Operator
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High
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Bias Towards Successful Operator

Note. From *‘The Effects of History of Experience and Current Context on Problem
Solving,” by M. C. Lovett, 1994, p. 87, unpublished doctoral dissertation. Reprinted
by permission.
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able to model these data by assuming that participants
were combining their experience with the operators
(serving as prior odds) with the effect of distance to goal
(serving as likelihood ratio). In the domain of question-
answering strategies, Reder (1987, 1988) had earlier
shown a similar combination of information about overall
strategy success with strategy appropriateness.

ACT-R estimates the log odds that a production
calling for an operator will be successful according to the
formula

Log Odds(Operator)
= Log(Prior Odds) + Context Appropriateness,

where the prior odds reflect the past history of success
and context appropriateness reflects how close the oper-
ator takes one to the goal. When multiple productions
apply, ACT-R selects the production with the highest ex-
pected gain.

Summary

Whether it is selecting what memory to retrieve, what
category to place an object in, or what strategy to use,
participants and ACT-R are sensitive to both prior in-
formation and information about appropriateness to the
situation at hand. Although it is hardly a conscious pro-
cess, people seem to combine this information in a way
that is often optimal from a Bayesian perspective. It is
this capacity that enables people to have the right knowl-
edge at their fingertips most of the time. Although Bayes-
ian inference is nonintuitive and often people’s conscious
judgments do not accord with it (even when their behavior
does—see Figures 5, 6, and 8), it is really a very simple
mechanism. Thus, we achieve great adaptiveness in
knowledge deployment by simple statistical inference.

The Metaphor of Simon’s Ant

In The Sciences of the Artificial, Simon (1981) described
a situation in which an ant produced a very complex
path across the terrain of a beach. A person observing
only the path itself might be inclined to ascribe a great
deal of intelligence to the ant. However, it turned out that
the complexity of the path is really produced by the com-
plexity of the terrain over which the ant was navigating.
As Simon wrote, “An ant, viewed as a behaving system,
is quite simple. The apparent complexity of its behavior
over time is largely a reflection of the complexity of the
environment in which it finds itself” (p. 64). Simon ar-
gued that human cognition is much the same—a few rel-
atively simple mechanisms responding to the complexity
of the knowledge that is stored in the mind. In Simon’s
analogy, the complex behavior of the ant maps onto hu-
man cognition, the ant’s navigating mechanisms map
onto basic cognitive mechanisms, and the complexity of
the beach maps onto the complexity of human knowledge.

ACT-R fully endorses Simon’s (1981) analogy but
also carries it one degree further in analyzing the com-
plexity of the knowledge we as humans possess. In this
application of the analogy, the complex behavior of the

ant maps onto the knowledge we have acquired, the ant’s
navigating mechanisms maps onto our relatively simple
learning processes, and the complexity of the beach maps
onto the complexity of our environment. Under this
analysis, complex human cognition is just a simple re-
flection, once removed, of its environment, even as the
ant’s navigation is directly a simple reflection of its
environment.

In a nutshell, ACT-R implies that declarative knowl-
edge is a fairly direct encoding of things in our environ-
ment; procedural knowledge is a fairly direct encoding
of observed transformations; and the two types of knowl-
edge are tuned in to their application by encoding the
statistics of knowledge use in the environment. What dis-
tinguishes human cognition from the cognition of other
species is the amount of such knowledge and overall cog-
nitive architecture in which this is deployed (particularly
the ability for organizing behavior according to complex
goal structures).
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