Problem Set 8 Solution

Due: Monday, November 6, 2023 at noon

Problem 8.1 [Acyclic Geography].

In directed vertex geography (introduced in Lecture 13), players take turns moving a single token along the edges of a directed graph, without repeating previously visited vertices. The loser is the first player who is unable to move. In general directed graphs, determining the winner is PSPACE-complete.

Prove that directed vertex geography is P -hard when played on a directed acyclic graph, that is, a graph with no directed cycles. (In fact, this problem is P-complete.) Remember that P-hardness reductions need to be NC algorithms (Alternatively, it suffices to guarantee your reduction uses logarithmic space.)

You must include a drawing or diagram in your submission.

Solution:

Call a vertex is winning if the player to move wins when the token is at that vertex. It is straightforward to see that a vertex v with outgoing edges to vertices w_{1} and w_{2} is winning if and only if w_{1} and w_{2} are not both winning. Using this fact, we can reduce from NAND-CVP by transforming every gate G_{i} into a vertex v_{i}, and every connection between the output of G_{i} to the input of a NAND gate G_{j} into an edge $v_{j} \rightarrow v_{i}$. For each input gate G_{i} we add an extra vertex v_{i}^{\prime} and an edge $v_{i} \rightarrow v_{i}^{\prime}$ if G_{i} has value 1 .

This reduction can be computed in logarithmic space, hence in NC. Determining whether an edge $v_{j} \rightarrow v_{i}$ exists requires only checking whether G_{i} is an input to G_{j}. Similarly for v_{i} corresponding to input gates, determining whether there is an edge $v_{i} \rightarrow v_{i}^{\prime}$ (and whether v_{k}^{\prime} exists) requires only reading the input value of G_{i}.

