6.5440: Algorithmic Lower Bounds, Fall 2023
 Prof. Erik Demaine, Josh Brunner, Lily Chung, Jenny Diomidova

Problem Set 6 Solution

Due: Monday, October 23, 2023 at noon

Problem 6.1 [3-spinner hardness].

A \boldsymbol{k}-spinner is a deterministic gadget with k locations and two states, 1 and 2 . When the gadget is in state 1 , the agent can enter at any location and exit at the clockwise next location, while switching the gadget to state 2 . When the gadget is in state 2 , the agent can enter at any location and exit at counterclockwise next location, while switching the gadget to state 1 .

For example, here is the state diagram of a 3 -spinner:

You can also see an example of a 4-spinner in action in this video: https://youtu.be/QjfiRNrAmIo?t=1097
Prove PSPACE-completeness of reachability (one-player motion planning) with 3-spinners.
You must include a drawing or diagram in your submission.

Solution:

We reduce from motion planning with locking 2-toggles. First note that if we only use two locations of a 3 -spinner it acts as a 1 -toggle. Next connect a pair of 3 -spinners with and surround them with 1 -toggles like this:

In this state the agent can either traverse from bottom-left to top-right or from top-left to bottom-right. After traversing from top-left to bottom-right, we get the following:

In this state, the only possible traversal is from bottom-right to top-left, undoing the previous transition. Similarly, if the first traversal was bottom-left to top-right, the next traversal must undo it. Therefore this is a locking 2-toggle.

Fun fact: this problem is still PSPACE-hard even without branching hallways, and when the 3 -spinners are placed on a hexagonal grid! However, this proof is a lot more complicated; see 'Recognizing the Repeatable Configurations of Time-Reversible Generalized Langton's Ant Is PSPACE-Hard' by Tatsuie Tsukiji and Takeo Hagiwara, Algorithms 4(1):1-15, 2011.

