6.5440: Algorithmic Lower Bounds, Fall 2023 Prof. Erik Demaine, Josh Brunner, Lily Chung, Jenny Diomidova

Problem Set 5 Solution

Due: Tuesday, October 10, 2023 at noon

Problem 5.1 $[1 \times n \text{ edge-matching}].$

Recall that an (unsigned) *edge-matching puzzle* consists of *mn* tiles, where each tile is a unit square whose sides are each labeled with a color. The goal is to place the *mn* given tiles into an $m \times n$ rectangle such that tiles match in color on shared edges.

Give a reduction from Hamiltonicity in Directed 3-Regular Graphs to show that edge-matching puzzles are NP-hard even when the following two conditions hold simultaneously:

- m = 1, i.e., the puzzle is $1 \times n$; and
- · tiles can be freely rotated, reflected, and translated.

By contrast, in Problem Set 2, you were asked to prove NP-hardness of $2 \times n$ edge matching (m = 2) when tiles *cannot* be rotated or flipped.

You must include a drawing or diagram in your submission.

Solution: We reduce from the Hamiltonian path problem in directed 3-regular graphs. Let *G* be a directed 3-regular graph on *n* vertices. We will have one tile for each vertex of *G*, and one color for each edge of *G*. For each vertex with incoming edge *a* and outgoing edges *b*, *c* we create a tile with edges colored (in rotational order) *a*, *a*, *b*, *c*. For each vertex with incoming edges *d*, *e* and outgoing edges *f*, we create a tile with edges colored *d*, *e*, *f*, *f*.

This tile set can be computed from *G* in polynomial time. We claim that there exists a Hamiltonian path in *G* if and only if the tile set admits a $1 \times n$ edge matching.

Suppose there exists a Hamiltonian path v_1, v_2, \ldots, v_n . Then we can place the corresponding tiles in the same order,

and rotate them so that the color of the border between tiles v_i and v_{i+1} corresponds to the edge (v_i, v_{i+1}) . This can always be done because for any pair of incoming and outgoing edge through v_i , there is an orientation of the corresponding tile such that the incoming edge's color is on the left and the outgoing edge's color is on the right. Thus we obtain a valid edge matching.

Now suppose instead that there exists a $1 \times n$ edge matching. Number the vertices v_1, v_2, \ldots, v_n according to their order of appearance in the matching. Every pair of consecutive vertices v_i, v_{i+1} shares an edge of *G*: it is the edge corresponding to the color of the shared border between the tiles. If the edge in question is (v_i, v_{i+1}) , we call it *forwards*; if it is (v_{i+1}, v_i) , we call it *backwards*.

Now consider three consecutive vertices v_i, v_{i+1}, v_{i+2} and the two edges corresponding to the borders between them. By considering v_{i+1} 's tile, we can see that the two edges are either both forwards or both backwards. Therefore the edges in the edge matching are either all forwards or all backwards. So they form a directed Hamiltonian path.