6.5440: Algorithmic Lower Bounds, Fall 2023 Prof. Erik Demaine, Josh Brunner, Lily Chung, Jenny Diomidova

Problem Set 11

Due: Monday, November 27, 2023 at noon

Problem 11.1 [Parameterized Steiner Tree].

Let G = (V, E) be an undirected graph, and let $T \subseteq V$ be a set of *terminal vertices*. A *Steiner subgraph* on *T* is a connected subgraph H = (V', E') of *G* such that $T \subseteq V'$, that is, *H* connects all of the terminals.

The *k*-NONTERMINAL STEINER TREE problem has *k* as a parameter and *G*, *T* as inputs. It asks whether there exists a Steiner subgraph H = (V', E') on *T* such that $|V' \setminus T| \le k$. In other words, the question is whether there exists a set of *k* or fewer nonterminal vertices *N* such that $T \cup N$ induces a connected subgraph of *G*.

Prove that this problem is W[2]-hard.

You must include a drawing or diagram in your submission.

Hint: You may find it helpful to reduce from the W[2]-complete problem *k*-SET COVER: given a set U of elements, a collection $S \subseteq 2^U$ of subsets of U, and a parameter k, is there is a subcollection $S' \subseteq S$ of size $|S'| \leq k$ such that every element of U is contained in some member of S'?