Problem Set 10 (Optional)

Due: Monday, November 20, 2023 at noon

Problem 10.1 [Twenty Questions].

Let U be a finite set ("the universe"). For two distinct elements $x, y \in U$, a set $T \subset U$ separates x from y if either:

- $x \in T$ and $y \notin T$; or
- $x \notin T$ and $y \in T$.

A collection $S^{\prime} \subseteq 2^{U}$ of subsets of U is discerning if, for every two distinct elements $x, y \in U$, there exists some $T \in S^{\prime}$ that separates x from y.

The Minimum Questions problem is, given a set U and a collection $S \subseteq 2^{U}$ of subsets of U, to find the smallest possible discerning collection $S^{\prime} \subset S$; that is, the discerning collection consisting of the smallest possible number of subsets.

Prove that there is a log-approximation-preserving reduction f, g from Minimum Set Cover to Minimum Questions, in the following sense:

- f is a function from Set Cover instances to Questions instances.
- g is a function from solutions of $f(x)$ to solutions of x.
- f, g are computable in polynomial-time.
- For all functions $\alpha \in O(\log n)$ there exists a function $\beta \in O(\log n)$ satisfying the following. For all instances x and all solutions y^{\prime} of $f(x)$, if y^{\prime} is an α-approximation for $f(x)$ i.e. $\frac{\operatorname{cost}\left(y^{\prime}\right)}{O P T(f(x))} \leq$ $\alpha(|f(x)|)$, then $g\left(y^{\prime}\right)$ is a β-approximation for x i.e. $\frac{\operatorname{cost}\left(g\left(y^{\prime}\right)\right)}{O P T(x)} \leq \beta(|x|)$.
Such a reduction implies that, if you have an $O(\log n)$-approximation algorithm for Minimum Questions, then you can obtain an $O(\log n)$-approximation algorithm for Minimum Set Cover, which is known to be impossible unless $\mathrm{P}=\mathrm{NP}$.

You must include a drawing or diagram in your submission.
Hint 1: There is a reduction from Set Cover to the decision version Questions as follows. Suppose the Set Cover instance has elements $V=\left\{v_{0}, \ldots, v_{n-1}\right\}$ and sets $A \subseteq 2^{V}$. Then the reduction to Questions is defined by:

$$
\begin{aligned}
U & =V \times\{0,1\}, \\
S & =S_{1} \cup S_{2}, \\
S_{1} & =\{T \times\{0\} \mid T \in A\}, \\
S_{2} & =\left\{B_{i} \mid 0 \leq i<\left\lceil\log _{2} n\right\rceil\right\}, \\
B_{i} & =\left\{v_{j} \mid \text { the } i \text { th bit of } j \text { is equal to } 1\right\} \times\{0,1\} .
\end{aligned}
$$

Hint 2: You might have to use duplication in order to turn the above into a log-approximation-preserving reduction.

