
6.440 Essential Coding Theory March 5, 2008

Lecture 9

Lecturer: Madhu Sudan Scribe: Shubhangi Saraf

Today we’ll summarize what we’ve seen so far on the combinatorics of codes
and we’ll see the proof be Alon for a bound for ‘balanced codes’. Next lec-
ture we’ll move on to the algorithmics of codes. The lecture on March 31st is
canceled.

1 Summary of the three basic bounds

Consider the case of the binary alphabet, i.e. q = 2. We’ll look at families of
codes of the form Ci = (ni, ki, di)2, where limi→∞ ni = ∞, limi→∞

di

ni
= δ, and

limi→∞
ki

ni
= R. We’ll look at the asymptotic bounds that we can prove on rate

R of such codes as δ → 0 and as ǫ → 0 for when δ = 1/2 − ǫ. The summary of
our results so far is given in the table below.

R as δ → 0 R as δ = 1
2 − ǫ and ǫ → 0

Negative Result R ≥ 1 − δ
2 log 1

δ−(lower order) R ≤ 1 − 2δ = 2ǫ = O(ǫ) (Elias/Plotkin)
Existential Result R ≥ 1 − δ log 1

δ−(lower order) R = Ω(ǫ2)

Constructive Result R ≥ 1 − O(
√

δ log 1
δ )−(lower order) R = Ω(ǫ3)

1.1 R as δ → 0

Observe that for R as δ → 0, both the negative as well as the existential result
are asymptotically the the same function. The growth is right, but they don’t
have the same constant. We don’t know which one of the two bounds is the
right answer and it is a question that is well worth examining.

Let us review how we obtained our bound for the constructive result. We
had an outer code [n1, k1, d1]2k2 , where d1

n1

= δ1 and k1

n1

= R1, and we had an

outer code [n2, k2, d2]2 where d2

n2

= δ2 and k2

n2

= R2. We assume 2k2 ≥ n1.
Then we could obtain R1 = 1 − δ1. For the inner code we could obtain R2 =
1 − δ2 log 1

δ2

(which is the best existential result we have). Combining the two,

we get R = R1 · R2 ≈ 1 − δ1 − δ2 log 1
δ2

, and δ = δ1 · δ2, which is optimized

when δ1 = δ2 =
√

δ, which gives us R ≥ 1 − O(
√

δ log 1
δ )−(lower order terms).

Observe that the gap in the existential and constructive result is embarrassingly
large and there is still much to understand.
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1.2 R as δ =
1

2
− ǫ and ǫ → 0

In the other extreme, when δ → 1/2, by the Plotkin bound we know that
R ≤ 1 − 2δ. This gives us the best bound we’ve seen so far for a negative
result. For the existential result, we use the probabilistic construction. By an
application of the Chernoff bound, we can show that we can get at least Ω2ǫ2n

codewords, which gives as R = Ω(ǫ2). Again, the gap between the negative
and the existential result is huge - O(ǫ) vs Ω(ǫ2). For a constructive result, we
are able to obtain R = Ω(ǫ3). As before, the gap between the existential and
constructive result is large.

The negative result (that we obtained by the Plotkin bound) can actually
be improved to R = O(ǫ2 log 1

ǫ ). , but the proof is slightly outside the scope
of the class. We’ll prove the result for the slightly restricted class of balanced

codes.

2 Balanced Codes

A code C ∈ {0, 1}n is ǫ-balanced if ∀x, y ∈ C such that x 6= y,

(
(1 − ǫ)

2
≤ ∆(x, y) ≤ (

(1 + ǫ)

2
.

Observe that the first inequality just says that C is a code of relative distance

at least ( (1−ǫ)
2 . The second inequality is a new condition, but many of the codes

(Hadamard and dual BCH with a coset containing the all 1s vector removed)
we’ve constructed so far have this property, and it isn’t too unreasonable a
restriction. For these codes we’ll prove the following strong bound.

Theorem 1 If C is ǫ-balanced, then

Rate(C) =
log2 |C|

n
= O(ǫ2 log

1

ǫ
).

Proof [Alon] For the proof, we’ll use the usual Hamming to Euclid reduction
that we’d used earlier. Therefore we assume C ⊆ {−1√

n
, +1√

n
}. Also, we’ll repre-

sent C as a K × n matrix with entries from {−1√
n
, +1√

n
}, where each row of the

matrix represents a codeword.
Observe that the matrix M = C · CT is a K × K matrix with the following

properties:

1. The diagonals of M are all 1’s.

2. The off diagonal entries of M are at most ǫ in absolute value.

3. Rank(M) ≤ n.
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2.1 Linear Algebra Review

If M is a real and symmetric K × K matrix then

• It has K eigenvalues (not necessarily distinct), say λ1, λ2, . . . , λK .

• Rank(M) = K − #{i|λi = 0}.

• The trace of M , Tr(M) :=
∑K

i=1 Mii
=

∑K
i=1 λi

• M · M has eigenvalues λ2
1, λ

2
2, . . . , λ

2
K .

Lemma 2 (1) If M is a real, symmetric K × K matrix with all its diagonal

entries being 1 and its off diagonal entries being at most ǫ in absolute value,

then

Rank(M) ≥ K

1 + (K − 1)ǫ2
.

Proof Let λ1, λ2, . . . , λK be the eigenvalues of M . Then

K
∑

i=1

λi = K.

Say λ1, λ2, . . . , λr 6= 0 and λr+1, . . . λK = 0. By the Cauchy-Schwartz inequality,
this implies that

K
∑

i=1

λ2
i ≥ K2

r
=

K2

Rank(M)
.

Also,

K
∑

i=1

λ2
i =

K
∑

i=1

(M · M)ii
=

∑

i,j

Mij
· Mij

=
∑

i

(
∑

j

M2
ij

) ≤ K + K(K − 1)ǫ2.

Putting both equations together we conclude that

Rank(M) ≥ K

1 + (K − 1)ǫ2
.

Observe that in the statement of the above lemma, if we assume ǫ is a
constant and we let K grow arbitrarily large, then we get that Rank(M) ≥ 1/ǫ2.
It doesn’t grow with large with K and hence it doesn’t quite give us what we
want for the theorem. We’ll apply the lemma to a different matrix to get out
result.

Lemma 3 (2) Let M (t) be the matrix whose (i, j)’th entry is M t
ij
. Let r =

Rank(M). Then

Rank(M (t)) ≤
(

r + t

t

)

.
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Proof Let Vi, . . . Vr span the columns of M . Consider a column of the form
∑r

i=1 αiVi. In M (t), we get columns that are vectors whose j’th entry is of the
form (

∑r
i=1 αiVij

)t. We want to show that the columns of M (t) are spanned by
few vectors. Let

V (k1,...,kr) := V
(k1,...,kr)
j := V k1

1,j · V k2

2,j · · ·V kr

r,j , j ∈ {1, . . . k}.

Then the set of vectors

V (0,0,...,0), V (0,0,...,1), . . . , V (t,0,...,0),

i.e. the set of vectors V (k1,k2,...,kr) where
∑

ki = t, span all vectors of the form
(
∑r

i=1 αiVij
)t.

Lemma 4 (3) If M is a real, symmetric K × K matrix with all its diagonal

entries being 1 and its off diagonal entries being at most ǫ in absolute value,then

Rank(M) ≥ Ω( 1
ǫ2 · 1

log 1/ǫ · log K).

Observe that the above lemma implies that when ǫ is a constant, the rank grows
with K as K goes to ∞, which is what we’re looking for.
Proof Pick t so that (ǫt)2 = ǫ2t ≈ 1

K . Hence t = log K
log 1

ǫ2

. By Lemma 1 we get

that

Rank(M (t)) ≥ K

2
.

However we also know that

Rank(M (t)) ≤
(

r + t

t

)

≈ (
r

t
)t.

Thus
r

t
≥ K1/t ≈ 1

ǫ2
⇒ r ≥ t

ǫ2
= Ω(

1

ǫ2
· 1

log 1/ǫ
· log K).

The proof of Theorem 1 immediately follows from the above lemma.

Even for general codes, it has been shown that R = O(ǫ2 log 1
ǫ ). This is

known as the MRRW bound or the linear programming bound. There are
recent proofs of this result by [Navon, Samorodnitsky] and [Friedman, Tillich]
that give some geometric insight.
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