
6.440 Essential Coding Theory Feb 20, 2008

Lecture 5
Lecturer: Madhu Sudan Scribe: MinJi Kim

1 Lecture overview

In this lecture, we will take a detour from coding theory for a crash course in
algebra, which will be useful in the future. As the crash course part suggests,
this lecture will not provide an extensive coverage of algebra, but only the little
part of it that we really need.

• Definitions

• Polynomial rings

• Finite fields

2 Definitions

A ring is a set R with two binary operations usually called addition, denoted
as +, and multiplication, denoted as ·, such that (R, +) satisfies the five axioms
of closure, associativity, commutativity, identity element (called zero, 0), and
inverse element; and (R, ·) satisfies the three axioms of closure, associativity,
and identity element (called one, 1). Furthermore, multiplication (·) distributes
over addition (+), i.e. a · (b + c) = a · b + a · c.

Rings are commutative over addition (a + b = b + a), but need not be
commutative over multiplication (a ·b = b ·a). Rings that satisfy commutativity
for multiplication are called commutative rings. In this lecture, we will only
consider commutative rings.

A field F is a ring where every non-zero element has a multiplicative inverse.

3 Polynomial rings

A polynomial ring is a set of polynomials in one or more variables with coef-
ficients from a ring. As the name suggests, the polynomial ring with addition
(+) and multiplication (·) itself forms a ring.

To be more precise, let R be a ring. A polynomial P (X) is defined to be of
the form:

P (X) = a0 + a1X + ... + an−1X
n−1 + anXn
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where a0, a1, ..., an ∈ R. The degree of a polynomial, deg(P (X)), is the index
of the highest non-zero coefficient. A polynomial P (X) is monic if its highest
coefficient is one.

Consider two polynomials P1(X) = a0 + a1X + ... + an−1X
n−1 + anXn and

P2(X) = b0 + b1X + ... + bn−1X
n−1 + bnXn. Then, addition and multiplication

of these two polynomials are given by the following formulas:

P1(X) + P2(X) =
n∑

i=0

(ai + bi)Xi

and

P1(X) · P2(X) =
2n∑

i=0


 ∑

j+k=i

ajbk


Xi.

It is not hard to check that this set of polynomials with coefficients from a ring
R with operations + and · itself forms a ring, which is denoted by R[X]. In this
lecture, we will only consider polynomial rings where the coefficients are from a
field F, and we will denote this polynomial ring as F[X].

There are many useful properties of polynomials, of which we discuss three
of them here.

• We can consider a polynomial P (X) = a0 +a1X + ...+an−1X
n−1 +anXn

as a finite sequence of elements from F, since P (X) is defined by the
coefficients a0, a1, ..., ad ∈ R.

• Given a polynomial P (X) =
∑

i aiX
i ∈ F[X] and an element α ∈ F,

we define P (α) =
∑

i aiα
i. This mapping F[X] × F → F is called the

evaluation map.

• An element α ∈ F is a root of P (X) if P (α) = 0.

• Given polynomials P1(X) =
∑n

i=0 aiX
i and P2(X) =

∑m
j=0 bjX

j where
n ≥ m, P1(X) is equivalent to P2(X) if ai = bi for all i ≤ m and ai = 0
for all i > m. For example, the two polynomials 1+X +0X2 is equivalent
to 1 + X, which agrees with our intuition.

Lastly, we present the division algorithm. Although it is called an “algo-
rithm”, this is actually a theorem that states the outcome of the process of
division of polynomials.

Theorem 1 (Division Algorithm) Given any two f, g ∈ F[X], there exists
unique q, r ∈ F[X] such that deg(r) < deg(g) and f = q · g + r.

The proof of the theorem consists of two parts: existence proof and unique-
ness proof. The existence of q and r can be proven by long division, and the
uniqueness can be shown by contradiction.
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3.1 Unique factorization domain (UFD)

A unique factorization domain is a commutative ringR in which every element is
either reducible, if it can be written as a product of other elements, or irreducible.
This representation is unique in the sense that if x ∈ R can be presented as
x = p1p2...pn and x = q1q2...qm where pi’s and qj ’s are irreducible elements
of R, then m = n and there is a permutation Π : [1, n] → [1, n] such that
pi = qΠ(i).

Any field F is trivially a UFD, since every non-zero element has a multiplica-
tive inverse. In addition, if R is a UFD, then so is R[X]. Therefore, F[X] is a
UFD.

3.2 Fundamental theorem of algebra

Lemma 2 (Fundamental Theorem of Algebra) A non-zero degree d poly-
nomial P (X) ∈ F[X] has at most d roots.

The proof of this lemma follows from the Division Algorithm. To give an idea
of how the proof works, lets assume that α1 is a root. Then, (X − α1) divides
P (X). This implies that P (X) = Q(X) · (X − α1) + 0. By induction, if there
are d roots α1, α2, ..., αd, then P (X) = Q(X) · (X −α1) · (X −α2) · ... · (X −αd)
where deg(Q(X)) ≤ 0. This bounds the number of roots of P (X) to at most d.

The corollary of the Fundamental Theorem is very useful, and we state it
below.

Corollary 3 Let P (X) and Q(X) be distinct degree d polynomials in F[X].
Then, there are at most d points α ∈ F such that P (α) = Q(α).

3.3 Polynomial interpolation

Given some set of data points, polynomial interpolation finds a polynomial that
goes through these points. Formally, given a set of data points (αi, βi) ∈ F×F,
i = 0, 1, ..., d, interpolation aims to find P (X) =

∑d
j=0 cjX

j such that P (αi) =
βi for i = 0, 1, ..., d (or vice versa).

One approach to polynomial interpolation is to use matrices. By putting
together the d + 1 linear equations into a matrix form, we have:




1 α0 ... αd
0

...
...

...
1 αj ... αd

j
...

...
...

1 αd ... αd
d



·




c0

...
cj

...
cd




=




β0

...
βj

...
βd




The matrix one the left is a Vandermonde matrix, and its determinant is
given by

∏
1≤i<j≤n(αj −αi). By solving this system of equations for cj , we can

construct the polynomial P (X). However, this may cost O(d3) time to solve.
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Another approach to polynomial interpolation problem is to use Lagrange.
By choosing the Lagrange basis, we get the identity matrix (instead of the
Vandermonde matrix) and this allows us to reduce the cost to O(d2).

3.4 Multi-variate polynomials

We define a new set F(X) of ratio of pairs of polynomials as follows:

F(X) =
{

f

g

∣∣∣ f, g ∈ F[X], g 6= 0
}

.

We say that f/g, f ′/g′ ∈ F(X) are equivalent if f ′ = f · p and g′ = g · p.
It is known that F(X) is a field, and therefore, F(X)[Y ] is a polynomial ring

with variable Y and coefficients from F(X). As a result, everything we have
discussed so far in this lecture applies to F(X)[Y ]. Using this new polynomial
field, F(X)[Y ], we can now define multi-variate polynomial rings.

For example, to construct a polynomial ring with two variables X and Y ,
we first construct the polynomial ring F(X), and then, on top of it, the ring
F(X)[Y ]. For example, P (X,Y ) = X2Y 2 + 3XY 2 + 5X2Y + 4XY − 5X is
a polynomial in Y with coefficients F(X) as follows: (X2 + 3X)Y 2 + (5X2 +
4X)Y + (−5X).

This can be extended to include n variables X1, X2, ..., Xn such that we get n-
variate polynomial rings F[X1, X2, ..., Xn]. A polynomial f ∈ F[X1, X2, ..., Xn]
is defined to be of the form:

f =
∑

cdX
d1
1 Xd2

2 ...Xdn
n .

The degree of polynomial f is defined to be:

deg(f) = max
d,cd 6=0

{
n∑

i=0

di

}
.

4 Finite fields

A finite field is a field that contains finitely many elements. Let Fq denote a
finite field of q elements. There is a unique field of order q = pt for every prime
p and positive integer t (up to isomorphism). Finite fields will become very
handy in this course, and it would be useful to have an efficient representation
of Fq.

The most naive way of representing Fq is by creating two tables of size q×q:
a multiplication table and an addition table. However, this requires polynomial
in q bits to represent.

4.1 Computable representation

For a more efficient representation, we use the uniqueness of fields of order q = pt

(up to isomorphism). This implies that for a prime field Fp = Zp. Therefore,

5-4



any multiplication/addition operation on this field can be translated to that of
on integers modulo p. This allows us to compact our representation of Fp to
log p bits.

To extend this to prime-power fields Fpt , we pick an irreducible monic poly-
nomial H(X) of degree exactly t. Then, we define Fpt = {g ∈ Fp[X], deg(g) < t}
with addition and multiplication in Fp[X] modulo H(X). This representation
of Fpt needs t elements of Fp, therefore, requires t log p = log q bits.

However, to use this representation, we need to find the irreducible monic
polynomial H(X) given p and t. This can be done probabilistically in time
polynomial in log q as well as deterministically in time polynomial in (p, t).

4.2 Vector representation

There is a nice correspondence between the finite field Fpt and vector space
(Fp)t, which respects addition. More formally, there is a correspondence between
α, β ∈ Fpt and vα, vβ ∈ (Fp)t such that α + β corresponds to vα + vβ = vα+β .
Unfortunately, there is no clear way to incorporate multiplication into this cor-
respondence; therefore, this vector representation is incomplete.

4.3 Matrix representation

Although vector representation by itself is incomplete, when combined with the
matrix representation (which we introduce here) can be quite useful.

Continuing with the notation used above, let vα ∈ (Fp)t correspond to α ∈
Fpt . Now, consider a linear map Lβ : (Fp)t → (Fp)t such that Lβ(vα) = vαβ .
Since Lβ is linear, we can represent it using a t× t matrix Mβ ∈ Ft×t

p such that
Lβ(vα) = Mβvα. From this representation, we have that Mα+β = Mα + Mβ

and Mαβ = Mα ·Mβ .
Note that the space of matrices in Ft×t

p is much larger than that of our finite
field Fpt , since Fpt has pt elements where as Ft×t

p has pt2 elements. Therefore,
we only need a subset of these matrices to represent a finite field.
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