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Today we are going to discuss limitations of codes. More specifically, we will see rate upper bounds of
codes, including Singleton bound, Hamming bound, Plotkin bound, Elias bound and Johnson bound.

1 Review of last lecture

Let C ⊆ Σn be an error correcting code. We say C is an (n, k, d)q code if |Σ| = q, |C| ≥ qk and ∆(C) ≥ d,
where ∆(C) denotes the minimum distance of C. We write C as [n, k, d]q code if furthermore the code is a
linear subspace over Fq (i.e., C is a linear code). Define the rate of code C as R := k

n
and relative distance

as δ := d
n
. Usually we fix q and study the asymptotic behaviors of R and δ as n → ∞.

Recall last time we gave an existence result, namely the Gilbert-Varshamov(GV) bound constructed by
greedy codes (Varshamov bound corresponds to greedy linear codes). For q = 2, GV bound gives codes
with k ≥ n− log2 Vol(n, d − 2). Asymptotically this shows the existence of codes with R ≥ 1−H(δ), which
is similar to Shannon’s result. Today we are going to see some upper bound results, that is, code beyond
certain bounds does not exist.

2 Singleton bound

Theorem 1 (Singleton bound) For any code with any alphabet size q, R + δ ≤ 1.

Proof Let C ⊆ Σn be a code with |C| ≥ |Σ|k. The main idea is to project the code C on to the first k− 1
coordinates. Namely, define a projection map π : Σn → Σk−1 such that (x1, · · · , xn) 7−→ (x1, · · · , xk−1). Let
π(C) = {π(x)|x ∈ C}. Since π(C) ⊆ Σk−1 so |π(C)| ≤ |Σ|k−1 < |Σ|k−1 ≤ |C|. It follows by the Pigeonhole
Principle that there exist two distinct codewords x and y in C such that π(x) = π(y). This is to say that the
first k−1 bits of x and y all agree, thus the distance between them is at most n−k +1. Since d is defined to
be the minimum distance between any pair of codewords, we conclude that d ≤ n − k + 1. Asymptotically,
this yields δ ≤ 1 − R or R + δ ≤ 1.

Note that Singleton bound holds for any q and when q is large it can be met exactly by some codes.

3 Hamming bound

Now we fix q = 2 and discuss the relation between Shannon and Hamming’s results. Recall that codes of
relative distance δ can correct δ/2 fraction of errors (with probability one if the number of error bits is small).
Note that this error correcting ability is independent of the underlying error models. We may call this as
error correcting in the Hamming sense. According to GV bound, there exist codes of rate R ≥ 1−H(δ) that
are able to correct δ/2 fraction of errors. On the other hand, Shannon’s result shows that δ/2 of random,
independent errors can be corrected by codes with rate at least 1 − H(δ/2). We will call this as error
correcting in the Shannon sense. The converse is also true, namely, δ/2 fraction of random and independent
errors requires R ≤ 1 − H(δ/2). Since Shannon’s error model is a restricted one, this upper bound result
must also hold in the Hamming sense: for all binary codes, R ≤ 1 − H(δ/2). Indeed, this was proved by
Hamming and is known as the Hamming bound (also known as Packing bound). Since the result is weaker,
the proof of Hamming bound is more compact than that of Shannon’s.

Theorem 2 (Hamming bound) R + H(δ/2) ≤ 1.
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Proof Since the code C has minimum distance d, all Hamming balls centered at codewords of radius d−1
2

must be disjoint. Since the volume of the union of all these balls is at most 2n and there are (roughly) at
most 2k codewords, this gives 2kVol(n, d−1

2 ) ≤ 2n. Asymptotically, when n → ∞, R + H( δ
2 ) ≤ 1.

4 Plotkin bound

After seeing these two bounds, a natural question to ask is: is the x-intercepts of the bounds correct? For
example, is there a code that can achieve δ = 0.75? The following Plotkin bound excludes such possibility.

Theorem 3 (Plokin bound) For q = 2, R + 2δ ≤ 1. In fact, we have

(i) (n, k, d) code implies (n − 1, k − 1, d) code;

(ii) (n, k, d) code with d > n
2 implies 2k ≤ n + 1 (asymptotically, if δ > 1

2 then R = 0).

Proof For part (i), let us list all the codewords in C as a 2k × n matrix. If we partition C into two
subcodes according to the values in the last column, then since there are only two possible values (0 and
1) as the last bit for each codeword, one of two subcodes will have size at least n/2. Moreover, since the
minimum distance of each subcode is at least d and all codewords in a subcode agree on last bit, every pair
of codewords in the subcode must disagree on at least d positions in the first n− 1 bits. If we pick the larger
subcode and delete the last bits of each codeword, we get an (n − 1, k − 1, d) code. Note that for general q,
this proof shows that (n, k, d)q codes implies (n − 1, k − 1, d)q code.

The proof of part (ii) requires a very useful idea in coding theory: embedding the Hamming space into
the Euclidean space. In doing this, Hamming distances in Hamming space are mapped to ℓ2-distance in
Euclidean space and we can use linear algebra tools, in particular dimension argument, to prove coding
bounds. Consider the mapping {0, 1} → R such that 0 7→ 1 and 1 7→ −1. For Hamming cube, this
gives {0, 1}n 7→ {−1, 1}n ⊆ R

n. Let x, y ∈ {0, 1}n be two codewords and let x̃ and ỹ be their images
in Euclidean space under this mapping. There is a nice relation between the Hamming distance between
x and y and the Euclidean distance (defined by inner product) between x̃ and ỹ. Namely, it is easy to
check that, if ∆(x, y) = d then 〈x̃, ỹ〉 = n − 2d. Suppose the binary code C has m codewords in it,
C = {x1, x2, . . . , xm} ⊆ {0, 1}n. What we need to show is that, if d > n

2 then m ≤ n + 1. After applying the
mapping, we have m n-dimensional real vectors x̃1, x̃2, . . . , x̃m. Since d > n

2 , for any two distinct vectors x̃i

and x̃j , 〈x̃i, x̃j〉 = n − 2∆(x̃i, x̃j) ≤ n − 2d < 0. Intuitively, we can not put more than n + 1 vectors in n
dimensional space such that any pair-wise angle between two vectors is great than 90◦. This fact is proved
in the following geometric lemma.

Lemma 4 If there exist m n-dimensional vectors x̃1, x̃2, . . . , x̃m such all the pariwise angles between these
vectors are larger than 90◦, then m ≥ n + 1. Note that the bound is tight by n-dimensional simplex.

Proof The Lemma can be proved by induction but we are going to prove it by linear algebra argu-
ment. Suppose for the purpose of contradiction m ≥ n + 2. Since the vectors are in n-dimensional space,
x̃1, x̃2, . . . , x̃n+1 are linearly dependent. That is, without loss of generality, there exist λ1, . . . , λℓ,−λℓ+1, . . . ,−λt

with t ≤ n + 1 and λi > 0 for every i such that

ℓ∑

i=1

λix̃i −
t∑

j=ℓ+1

λj x̃j = 0.

Now we consider the following two possibilities.

• case 1: t > ℓ > 0

Let z =
∑ℓ

i=1 λix̃i =
∑t

j=ℓ+1 λj x̃j . The we have

0 ≤ 〈z, z〉 = 〈
ℓ∑

i=1

λix̃i,

t∑

j=ℓ+1

λj x̃j〉

=
∑

i,j

λiλj〈x̃i, x̃j〉 < 0.
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• case 2: t = ℓ

Then we have

0 = 〈x̃n+2, 0〉 = 〈x̃n+2,

ℓ∑

i=1

λix̃i〉 =

ℓ∑

i=1

〈x̃n+2, x̃i〉 < 0.

So we reach a contradiction for either case and so we prove that m ≤ n + 1. 1

This complete the proof of part (ii) of the theorem.
The asymptotic Plotkin bound can be obtained by combining the two parts of the theorem and applying

the first part recursively.

For general q, Plotkin bounds gives R + q
q−1δ ≤ 1 and usually there are codes meeting this bound.

5 Elias-Bassalygo bound

Next we are going to see a single bound that is better than both Hamming and Plotkin bounds, the so-called
Elias-Bassalygo bound. The main idea is try to pack more codewords in the Hamming cube with limited
overlap. More specifically, we fit the Hamming sphere with larger balls of radius τ around each codeword
such that no point in the Hamming cube is covered by more than L balls. Then we have

2k · 2H(τ) ≤ sum of the volume of all balls ≤ L · 2n.

If we set L to a polynomial of n, then when n → ∞ after taking logarithm, the log L term vanishes and we
get k + H(τ) ≤ 1.

The radius τ defined in this way is called list decoding radius. To this end, we introduce a new notion of
error correcting, which may be called error correcting in the Elia’s sense (apart from Shannon and Hamming).
In this model, we use an encoding algorithm E to encode message m. After transmitting through a noisy
channel, we use a list decoding algorithm D to output a list of candidate messages {m1,m2, . . . ,mL}. We
say the algorithm successfully recovers the errors if m ∈ {m1,m2, . . . ,mL}, where the size of the list L is
a polynomial in n. A code C is called list decodable with list decoding radius τ if for any point x in the
Hamming cube there are at most a polynomially many codewords in C that are within distance τn from x.
Clearly the usual notion of decoding is a special case of list-decoding with L = 1.

To prove Elias-Bassalygo bound we need the following Johnson bound whose proof can be found in the
appendix of the lecture note.

Theorem 5 (Johonson bound) Every binary code of relative distance δ has list decoding radius

τ ≥ 1

2
(1 −

√
1 − 2δ).

Using Johnson bound, we thus proved the following theorem:

Theorem 6 (Elias-Bassalygo bound)

R + H(
1

2
(1 −

√
1 − 2δ)) ≤ 1.

The Elias-Bassalygo bound is clearly better than Hamming bound and it is also better than Plotkin
bound. Now we look at the behavior of Elias-Bassalygo bound at the neighborhood of δ = 0 and δ = 1/2.

Since
√

1 − x ≤ 1 − x
2 , so 1

2 (1 −
√

1 − 2δ) ≥ δ
2 . Therefore, when δ → 0, 1

2 (1 −
√

1 − 2δ) → δ
2 .

What about δ → 1
2? Let δ = 1

2 − ǫ, then 1
2 (1 −

√
1 − 2δ) = 1

2 (1 −
√

2ǫ). Since H( 1
2 − α) ≈ Θ(α2), when

α = o(1), it follows that H( 1
2 (1 −

√
1 − 2δ)) ≈ Θ(ǫ), when ǫ → 0. That is R ≤ Θ(ǫ). Is this tight? Recall

Shannon’s result shows that random codes can achieve R ≥ 1−H(δ). When δ = 1
2 − ǫ and ǫ → 0, Shannon’s

bound gives R ≥ O(ǫ2). So which bound is the correct one? It turns out another bound, called LP bound
gives better upper bound R ≤ Õ(ǫ2). But that is outside the scope of this course.

1Many proofs of this flavor can be found in the beautiful book of Babai and Frankl “Linear Algebra Methods in Combina-

torics”.
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