
6.440 Essential Coding Theory Feb 11, 2008

Lecture 2
Lecturer: Madhu Sudan Scribe: Daniel E. Lucani

1 Reminder

1. Problem set 1 is due Wednesday at 11pm.

2. Swastik (TA) will hold office hours on Wednesday 5-7pm.

3. Sign up early for scribe.

2 Lecture overview

This lecture will discuss some of the important points of Shannon’s 1948 paper
(“A Mathematical Theory of Communication”). The lecture covers:

1. An overview of Shannon’s problem (model considerations and contribu-
tions).

2. The Noisy Channel Coding Theorem for the case of the Binary Symmetric
Channel (BSC).

3. An outline of the converse of the Coding Theorem.

3 Overview of Shannon’s Problem

Let us first look at some of entities in Shannon’s model:

1. Source of Information: constitutes the entity that generates the informa-
tion to be stored or transmitted, e.g. a camera, a satellite.

2. Channel of communication: for the example of satellite communication,
the channel is the space.

3. Receiver: is the entity that should reconstruct the information generated
by the source.
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3.1 Contributions: Mathematical Model

Shannon gave us a mathematical model of both the source and the channel. Let
us look at the details of the model.

1. Source: It is modelled as a stochastic process with a probabilistic distribu-
tion. Shannon associated a parameter called Entropy to this distribution.
The entropy measures the uncertainty of a random variable produced by
the distribution and is associated also to a Rate at which this uncertainty
is generated.

2. Channel: It is modelled as an Input - Output process through a Marginal
Distribution of the output given the input of the channel. This gives a
way to study a channel of communication. Also, there is an associated
Capacity with every channel.

 

Channel Signal Signal 

3.2 Contributions: Architecture

Shannon provided an architecture of an information transmission system, in-
troducing the concepts of encoder and decoder which he showed to give more
reliable communications.

The implementation of an encoder and decoder has been a rich source of
algorithmic problems to computer science till today.
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4 Meta-theorem

∀ channels in “this class” ∃C (Capacity), ∀ Source in “this class” its Rate (R)
such that we can transmit information iff R < C.

Note:a more detailed version will be provided after some examples.

4.1 Case 1: Noiseless Channel

In this case, the channel is represented by an identity function, i.e. the output
is the same as the input. So there is not much interest in studying the channel.

However, we can consider compressing the information generated by the
source, and it can be done.

Shannon: Can compress source to its “Rate” but no better, and this com-
pression depends only on the source.

4.2 Case 2: Source generated k-bit strings with bits uni-
formly distributed

With uniformly distributed bits there is not much compression to be done to
the information from the source.

Shannon: Can encode (or add redundancy) to the message so as to recover
the message reliably at the receiver, provided the channel capacity is large
enough.

4.3 Combining case 1 and 2
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The first case corresponds to the problem of compress the information from
the source to convert it into a uniformly distributed sequence, while case 2 refers
to adding redundancy to a uniformly distributed sequence.
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Combining both cases gives the coding theorem (Our meta-theorem).
Shannon: Proved that breaking the problems of source and channel encod-

ing/decoding is optimal.

5 Binary Symmetric Channel (BSC)

 

0 0

1 1

1-p 

1-p 

p 
p 

BSC 

The binary symmetric channel with flipping probability p, BSC(p), is a bi-
nary channel in which the input has equal probability p to be flipped from 1 to
0, and from 0 to 1. This means that an incoming bit has probability 1 − p to
go through the channel unchanged and probability p to flip its value.

Shannon’s Theorem: The capacity of BSC(p) is 1−H(p).
where H(p) = −p log2 p− (1− p) log2(1− p).
Note that for p = 0 , H(0) = 0, which means that for the case of no

randomness C = 1, i.e. you can get 1 bit through per time unit. Note also
thatH(1/2) = 1 assures that there is no correlation between the input and the
output, and it characterizes a channel with capacity C = 0, i.e. you cannot get
information through that channel.
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5.1 Noisy Coding Theorem for BSC

Motivation If you inject a sequence X = (x1, ..., xn) through a channel we
receive X + Y , where Y = (y1, ..., yn).

Now, what is the distribution of Y ?
Informal Intuition: a typical Y is uniformly distributed over a set of size(
n
pn

)
≈ 2H(p)n.

Theorem ∀p ∈ (0, 1/2) without loss of generality, ε > 0, ∃δ > 0, n0. ∀n ≥ n0

∃k and functions:
E : {0, 1}k −→ {0, 1}n D : {0, 1}n −→ {0, 1}k
such that

1.
Pr [D(E(m) + Y ) 6= m] ≤ exp(−δn) (1)

for message m ∈ {0, 1}k and Y ← BSCn(p).

2.
k ≥ (1−H(p + ε))n (2)

Note: taking p ∈ (0, 1/2) is sufficient. For p = 0 it is the noiseless channel.
For p = 1/2 there is no correlation between input and output of the channel.
For the range of values of p ∈ (1/2, 1), consider that it is sufficient to change
our decision criteria at the receiver to be in p ∈ (0, 1/2), i.e. when a 1 outputs
the channel the receiver will interpret it as a 0, and vice versa.

Another question that arises is: where do the encoding (E) and decoding
(D) functions come from?

Informal Interpretation: There is an encoder and decoder such that the prob-
ability of having an error when decoding is exponentially small.

5.2 Formal Statements

We first recall the Chernoff Bound.

Chernoff Bound If y1, ..., yn ∈ [0, 1] are i.i.d (independent and identically
distributed) with Eyi = p, then

Pr

[∣∣∣∣∑n
i=1 yi

n
− p

∣∣∣∣ ≥ ε

]
≤ e−ε2/2n (3)

Notation: wt(Y ) For Y ∈ {0, 1}n with Y = y1...yn, we define its Hamming
weight wt(Y ) to be

∑
i yi.
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Claim If y ∈ {0, 1}n with wt(y) = i ∈ {(p− ε)n, ..., (p + ε)n}, then

Pr
Y

[Y = y] ≤ 1(
n
i

) ≤ 2−H(p−ε)n (4)

with Y ← BSCn(p). This follows from symmetry, as all error patterns with i

1s are equally likely. Note that the size of the set {y : wt(y) = pn} is
(

n
pn

)
≈

2H(p)n.

5.2.1 Back to the coding theorem: Proof

Encoding function E: Let us pick E : {0, 1}k → {0, 1}n at random uniformly
from all such functions. Then, ∀m 6= m′, E(m) is a random n-bit string, inde-
pendent of E(m′).

Decoding function D: Let us define our decoding function D(X) = if ∃!m ∈
{0, 1}k such that ∆(E(m), X) ≤ (p + ε/2)n produces as output message m.
Otherwise, the output is that “Too many errors” occurred.

Note that it is not efficient algorithmically.
Now let us look at two bad events:

1. E1: “Too many errors” defined as “wt(Y ) ≥ (p + ε/2)n”.

2. E2: “Error Pattern/Encoding Bad ” defined as “∃m′ 6= m such that
∆(E(m) + Y, E(m′)) ≤ (p + ε/2)n”

To prove the theorem we need to prove that:
A. If neither E1 nor E2 happen, then decoding is successfully.
B. Pr[E1] is small.
Proof: By Chernoff Bound, Pr[E1] ≤ e−

ε2
8 n

C. Pr[E2] is small.
Proof: Initially fix E(m), Y,m′ 6= m and pick E(m′) at random. Then,

Pr [∆(E(m′), E(m) + Y ) ≤ (p + ε/2)n] ≤

P(p+ε/2)n
i=0

0@ n
i

1A
2n (5)

≤ n2H(p+ε/2)n

2n (6)
.= 2(H(p+ε/2)−1)n (7)

Now, we take the union bound over all m1 6= m.

Pr [E2] ≤
∑

m′ 6=m Pr [∆(E(m′), E(m) + Y ) ≤ (p + ε/2)n] (8)

≤ 2k2(H(p+ε/2)−1)n (9)
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Note that if k = (1−H(p + ε))n, then

Pr [E2] ≤ 2(H(p+ε/2)−H(p+ε))n ≈ e−n (10)

Since both B and C hold for k = (1−H(p+ε))n, Pr [DecodingError] = τ ≤
e−n for parameters m,Y,E. Thus, ∃ E such that Pr [DecodingError] ≤ τ ≤ e−n

as function of m,Y.
Note that the statement in B is proven based on properties of Y, while C

depends on properties of the encoding function (E) itself.

6 Some Comments on the Converse

The converse of the coding theorem allows us to answer the following questions:
Is the rate k = (1−H(p))n the best possible? or Can we do better?
Shannon’s Answer: NO
In other words, the converse let us state that the rate k = (1 − H(p))n is

the best you can achieve.
The converse will be proven in detail in next lecture. The idea behind

the proof is that the source will be generating k-bit strings, while the channel
introduces errors. The number of typical errors is 2H(p)n, while the number of
possible messages is 2k. The output of the channel has 2n possible values. If
we want no two messages to be confused with one another, we would want that
2k2H(p)n ≤ 2n, i.e., k ≤ (1−H(p))n.
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