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Lecture 18

Lecturer: Madhu Sudan Scribe: Elena Grigorescu

In the previous lecture we introduced expander codes and showed some gen-
eral existential results, and discussed the rate and distance of such objects.
Today’s lecture will detail the Sipser-Spielman decoding algorithm for Tanner
codes, which are generalizations of the Gallager type expander codes.

1 Notations and main results from last lecture

Let G = L ∪ R be a bipartite graph with n left vertices and m right vertices.
Then G corresponds to a binary code CG with block length n, and dimension
k ≥ n −m, where the left vertices correspond to variables x1, . . . , xn ∈ {0, 1},
while the right vertices c1, . . . , cm correspond to constraints, such that ci is
satisfied iff

∑
u↔ci

xu = 0. Let SAT be the set of satisfied constraints, and
UNSAT be its complement in R. For u ∈ L let sat(u) be the number of satisfied
constraints that u is adjacent to, and let unsat(u) be the number of unsatisfied
such constraints.

The graph G is (c, d)-bounded if the left degrees are at most c and the right
degrees are at most d. Let Γ(S) = {v ∈ R | ∃ u ∈ S, u ↔ v}. G is a (γ, δ)-
expander if: ∀S ⊆ L s.t. |S| < δn, it is the case that |Γ(S)| > γ|S|. We assume
γ > 1. We also needed a special subset of Γ(S) namely, the set of vertices with
unique neighbors in S, denoted Γ+(S) = {v ∈ R | ∃ ! u ∈ S, u ↔ v}. As
before, G is a (γ̃, δ)- unique neighbor expander if: ∀S ⊆ L s.t. |S| < δn, it is the
case that |Γ+(S)| > γ̃|S|.

We showed last time the existence of such expander codes and exhibited a
relation between the expansion parameters of the underlying graph G and the
relative distance δ(CG) of the resulting Gallager code. We could thus obtain
binary codes with rate > 0 and relative minimum distance > 0, which is a
non-trivial task.

Theorem 1 Let c, d be constants, and let γ < c and δ = Ω(1) > 0. Then there
exists (c, d)- bounded (γ, δ) expanders.

Theorem 2 If G is a (c, d)- bounded, (γ, δ) - expander then δ(CG) ≥ δ.

The proof used the following key lemma.

Lemma 3 If G is a (c, d)-bounded (γ, δ)- expander, then G is also a (2γ−c, δ)-
unique neighbor expander, provided that γ > c/2.
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2 Decoding in linear time

In his initial paper, Gallager (1964) gave a decoding algorithm for LDPC codes,
but his algorithm was difficult to analyze. Later on, Sipser and Spielman (1994)
showed a much simpler and easier to analyze decoding algorithm for Tanner
codes, which can be viewed as generalization of LDPC codes. We will start
with their algorithm applied to LDPC codes and later on we will sketch its
analysis for Tanner codes.

Given: a received vector x = x1 x2 . . . xn

Goal: find the transmitted codeword w = w1w2 . . . wn ∈ CG s.t. ∆(w, x) ≤ pn,
for some p = O(1) to be chosen later.

FLIP :
1.Initialize : y ← x
2.Iterate : while there exists u ∈ L s.t. unsat(u) > sat(u), flip u.
3.Output : y.

Theorem 4 If the number of errors ∆(w, x) < αn, for some constant 0 < α <
1 , then on input x, the FLIP algorithm terminates in time O(n), and outputs
the correct codeword w (under some constraints on α, and on the expansion
parameters of G).

Proof

Suppose the received word x is within e errors of some codeword w, so
e = ∆(w, x). Further suppose γ > 3

4c.

Claim 5 FLIP terminates in ce iterations.

Proof It is easy to notice that FLIP terminates in m iterations. Indeed, at
each iteration, by flipping a left bit we must increase the number of satisfied
constraints by at least 1 To show the stronger result of the claim, let S = {i |
xi 6= wi}. Notice that only the vertices in Γ(S) are initially possibly unsatisfied.
Thus, initially UNSAT ⊆ Γ(S) which implies that |UNSAT | ≤ |Γ(S)| ≤ ce,
concluding that the algorithm terminates in at most ce iterations.

Claim 6 If x is within e = ∆(x, w) from w and e < δ
c+1n, then FLIP termi-

nates in the codeword w.

Proof First notice that since at each step at most 1 bit of y is being flipped,
in the final step ec we must have that ∆(y, w) ≤ ∆(x, w) + ce < (c + 1)e < δn.

At the beginning of the final iteration step let Sf = {i | yi 6= wi}. Suppose for
a contradiction that Sf 6= ∅. By Lemma 3 our (c, d)-bounded, (γ, δ)- expander
is also a (2γ − c, δ)-unique-neighbor-expander. Since |Sf | = ∆(y, w) < δn, we
obtain that |Γ+(Sf )| ≥ (2γ−c)|Sf | ≥

c
2 |Sf |. Since Γ+(Sf ) ⊆ UNSAT ⊆ Γ(Sf ),

on average, a vertex in Sf has more than c
2 unsatisfied neighbors in Γ(Sf ). This

implies that there is a vertex v ∈ Sf with more than c
2 neighbors in Γ(Sf ), and
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since v has at most c neighbors, v must have more unsatisfied constraints than
satisfied ones, and therefore it must be flipped. This contradicts the fact that
we were in the final step of the algorithm, and implies that |Sf | = 0 and that
the output is the correct codeword w.

3 A short history of expanders

We know that existentially, the following parameters are achievable: c, d = O(1),
γ < c and δ < 1

c
m
n . A line of research has focused on explicit constructions of

good expanders, starting with Grabber and Garil (1980), and independently
Margulis, whose constructions achieved γ > 0 and c

d < 1. Tanner (1984) im-
proved some of the parameters, and later Lubotsky, Phillips and Sarnak, and
independently Margulis, obtained constructions for any c, d, and for γ

c →
1
2 ,

with δ = O(1) > 0. In a major breakthrough, Capalbo, Reingold, Vadhan
and Wigderson (2001) obtained results of the type: ∀γ

c < 1, ∃c, s.t. ∀d, ∃δ, n0

s.t. ∀n > n0 one can construct a (c, d)-bounded, (γ, δ)-expander on n vertices.
Notice that our previous analysis for FLIP can only be applied to expanders
satisfying γ > 3

4c and therefore, those obtained by the latter authors. The orig-
inal Sipser-Spielman algorithm used Tanner type codes, which can be viewed as
generalizations of LDPC codes. In the following section we introduce Tanner
codes and a decoding algorithm for expanders with γ

c < 1
2 .

4 Tanner codes and their decoding

Let G = L ∪ R, with |L| = n and |R| = m, be (c, d)-bounded, (γ, δ)-expander
and let Csmall = [d, l, ∆] be a small code, where d = O(1), l ≤ d. Denote by
C ×Csmall the following graph (code). For each vertex v ∈ R its outgoing edges
to the variables are given in a fixed order, say (xi1 , xi2 , . . . , xid

). An assignment
(x1, x2, . . . , xn) is a codeword of C iff, for each constraint v ∈ R we have that
its corresponding ordered variables satisfy (xi1 , xi2 , . . . , xid

) ∈ Csmall.

Lemma 7 C = G×Csmall has Rate > 1− (d− l) c
d and Distance ≥ δ, provided

γ > c
∆ .

Proof We count the number of unconstrained coordinates of L. Each vertex
on the right can constrain at most d−l coordinates. Thus Rate > 1−(d−l)m

n ≥

1 − (d − l) (cn/d)
n . The distance statement can be obtain in the same way as in

the previous lectures and we omit it here.

In the ’90s, as described before, explicit expanders were known for the fol-
lowing setting of parameters: given γ

c < 1
2 , ∃c s.t. ∀d, ∃δ, n0 s.t. ∀n, n0 one
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could build a n-vertex expander. To decode these codes Sipser and Spielman
proposed a parallel variant of FLIP.

Parallel FLIP ( parameter t≪ ∆) :
1.Initialize : y ← x
2.Iterate : (a) Every constraint that is at distance ≤ t from a codeword of Csmall

sends flip messages to the variables in error.
(b) In parallel, every variable that received a flip message flips.

3.Output : y, when all constraints are satisfied.

Lemma 8 The number of variables in error reduces by a constant factor in
each iteration.

Proof Sketch:

Let S = {v ∈ L | yv 6= cv} be the set of variables in error. Let U = {u ∈
R | |{v ∈ S, v ↔ u}| ≤ t}. Let F = {v ∈ L | v receives flip message}.

Claim 9 Each constraint in U sends flip messages only to variables in S.

Proof The vertices in U are at distance ≤ t from Csmall and thus they must
send flip messages exactly to those vertices in S that are in error.

The vertices in U send correct flip messages, and we have that the set of

variables receiving correct flip messages has size |S∩F | ≥ |U|
c ≥

1
c

tγ−c
t−1 |S| which

tends to γ
c |S| for fixed γ, c, and fixed large t, ∆, d.

We now bound the number of incorrect flip messages received. Notice that
a constraint v will send a flip message to a vertex outside S only if it sees too
many vertices in S. Since such a constraint is at distance t from some codeword
of Csmall it follows that v is adjacent to at least ∆− t bad vertices of S. Then

|F − S| ≤ c|S|
∆−tt, which tends to 0 under the same settings of the parameters as

above.
This concludes that at each iteration, the number of vertices in error de-

creases by a factor of γ
c .
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