
6.440 Essential Coding Theory April 2, 2008

Lecture 15
Lecturer: Madhu Sudan Scribe: Shyamnath Gollakota

Note: This is a initial draft of the scribe notes. It will be updated later in
the semester.

1 Overview

In these notes we will discuss Parvaresh-Vardy(’05) Guruswami-Rudra(’06) codes
and their decoding algorithm.

In the previous lectures, we have talked about Reed Solomon codes and their
list decodability. Specifically, if we take a RS code, F k

q → Fn
q , then it has a

distance 1 − k
n and a list decoding radius (1 −

√
k
n ). Therefore, if we have p

fraction of errors then the list decoding rate of the code is (1− p)2. But this is
the best we can do?

In this direction, an existential argument can be given by considering a
random code and look at the worst possible ball of radius pn and count the
number of codewords that it contains. More specifically one can prove that,

Theorem 1 There exist (p,poly) list decodable codes which have a rate rate,
1− p− ε, ε > 0 and a alphabet size q = f( 1

ε ).

Note that for Reed Solomon codes, the code has a alphabet size which tends
to infinity as n tends to infinity. In contrast, here if we fix ε to say 0.01, q is
effectively a constant. However, the above theorem is only a existential proof
and it is not clear how to construct them and if there exists a polynomial time
decoding and encoding algorithm these codes.

The rest of today’s class is about a poly time decoding and encoding algo-
rithm which was proposed by Guruswami and Rudra over a poly size alphabet
in n.

2 Guruswami-Rudra ’06 (based on Paravaresh-
Vardy Result) Codes

They give an explicit family of codes of rate 1− p− ε, and q = nf( 1
ε ) which can

be encoded and decoded in polynomial time.
The beauty of their scheme is that, on the higher level, the proposed family

of codes is structurally similar to RS codes. Specifically,

• Message is a polynomial p of degree less than k.

15-1



• Encoding is again the same as RS codes, i.e., p(x1), · · · , p(xn) but with the
only change that we draw boxes each containing c of the above polynomial
evaluations, as shown in the figure.

Thus, we have a code over the alphabet σ = F c
q and the code given by

C : (F c
q )

k
c → (F c

q )
n
c . The most prominent change is that we have a change in

the alphabet size.
Another difference is that the points of evaluation of the function are picked

in a more careful way. Specifically, if α ∈ Fq is a primitive element (α is
a primitive element of a field if every non zero element in the field can be
represented as a power of α, i.e., Fq∗ = {α, α2, · · · , αq−1}).

Now, we pick n = q − 1 and the code as p(α), p(α2), · · · , p(αn), where as
shown in the figure we chunk every c of them, where c = f( 1

ε ). This code is
called the folded Reed Solomon code.

What is surprising is that looking that the already existing RS codes in a
different way has given a much more powerful family of codes.

3 How did they come up with this Code

In order to understand this it would be helpful to understand the sequence of
works which led to this code.

Previous work on RS codes was that the list decoding radius was 1 −√
k
n . This bound remained undisputed for more than 5 years which prompted

(Kiayias − Y ung′03) to use this seemingly hard problem to devise a crypto-
graphic scheme. In particular, the following assumption is used in their scheme.

Assumption: Decoding more than 1−
√

k
n + ε errors in RS codes is hard.

In order to understand their scheme let us look at a sample application. Let us
consider the canonical Key exchange protocol depicted in figure. Alice and bob
share a secret key S and want to exchange secret information which cannot be
determined by the Eavesdropper. The following protocol gives us the required
secrecy.

• Let S be a subset of the set of integers from 1 to n, S ⊆ [n].

• Alice wants to transmit the information, a polynomial p, to bob.

• She evaluates (y1, · · · , yn) and transmit them on the channel, where

yi =
{

p(xi) if i ∈ S
random otherwise (1)

• Clearly B can figure out p provided |S| ≥ deg(p).

• One can choose the different parameters to make it hard for the eaves-
dropper to decode the polynomial.

15-2



Note that the above scheme is very similar, in purpose, to the one time pad.
However, the only potential advantage it could have is that we could use the
same secret key for more than one message, which is not possible with the one
time pad.

So the question now, is if we use the same secret key twice, does the above
assumption change? This leads us to a new error correcting code and a new
problem.

3.1 New Error Correcting Problem

• Message: (p1, p2) → {yi, Zi}n
i=1.

• Decoding problem is as follows: Given {Xi, Yi, Zi}n
i=1 we want (P1, P2) of

degree k each, such that P1(xi) = Yi and P2(xi) = Zi as for many choices
of i.

However, note that the above decoding problem works in a different error mod-
els. The error premise is that if there exists an error then it is random, i.e.,
(Yi, Zi) are uniform in F 2

q . The key question is can we do better in this model?
A couple of papers try to address this. In particular, Bleichenbacher-Kiayias-

Yung show that one can poly-list decode from 1 − 2k+n
3n fraction of errors.

Coppersmith-Sudan show that we can poly-list decode from 1−O( k
n )

2
3 errors in

the ”random” error model. This is better than the 1−
√

k
n bound on RS codes

we had.
So what is the intuition for the improvement? Essentially, we have three

variables (Xi, Yi, Zi). In the RS code we had just two variables (Xi, Yi) which

resulted a error tolerance of 1 −
√

k
n . The larger number of variables can be

exploited to increase the number of errors that can be tolerated. Specifically,
the decoding could try to imitate the decoding algorithm for RS codes, i.e.,

• Step 1: Find Q(x, y, z) 6= 0 s.t. Q(xi, yi, zi) = 0, ∀i. For the first approxi-
mation we can assume that degx,y,zQ ≤ n

1
3 .

• Step 2’: ”Stare at this thing.”. We have a system of equations A[VQ] =
[O · · · 0]T . Unfortunately, this ”staring” does not lead anywhere.

• Step 2: Instead we transform the above system of equations to its dual
form, wA = [0 · · · 0], where the want wi = 0 when i is an error and wi 6= 0
when i is in S.

Detailed Analysis of the above decoding algorithm gives us the 1−O( k
n )

2
3 result.

4 Weaknesses/PV Questions

The above works has the following weaknesses.

15-3



• The random error model is not that appealing. Specifically we already
have the Shannon model which deals with the random error model. So
the question is can we do this in an adversarial model?

• The O( k
n )

k
n is not that appealing.

• May be we should really work under the original system of equations
AVQ = [0 · · · 0]T instead of wA = [0 · · · 0].

Thus the question is what does Q look like in the original system of equa-
tions? The space of all solutions which Q can take can clearly be written as
Q(x, y, z) = A(x, y, z)(y − p1(x)) + B(x, y, z)(z − p2(x)). this is a huge space of
solutions since the polynomials A and B are random.

In addition, it becomes clear that ”staring” at this system of equation actu-
ally loses information. Specifically, let us plot the zeros of Q(x, y, z). In order
to have a two dimensional plot, let us look at Q(x, y, z) as Qx(y, z) ∈ F (x)[y, z].
So we have a plot as shown in figure. Every point on the curve is a zero of the
system and gives us a polynomial pair (p1, p2). But we want ”the” point on this
curve. But there are infinitely many points on this curve. So we effectively lose
information since we have to choose from an infinitely number of points.

Thus, it looks like we have no hope! We need a poly sized list of polynomial
pairs but we seem to be getting infinity many pairs of polynomial pairs. The
cute trick used in the paper is to throw in another curve, Rx(y, z) = 0 into the
picture. Let us assume that this curve is known to both the sender and the
receiver and p1 and p2 lie on this new curve. Since the two curves are distinct
and have finite degrees, there are only a finite number of points at which they
can intersect. Thus, this simple trick has allowed us to reduce the number of
possible points from infinity to finite!!.

So how do we implement this idea? The implementation has to answer a
number of questions, namely

• Which Rx(y, z) = 0 should be use?

• How do we use this trick as a effective coding technique. Specifically, given
p1 can we find p2 s.t. R(p1, p2) = 0.

• Can we bound the degree of p2?

PV come up with a simple answer to these questions. Essentially the insight
is that working with this ring is messy. So lets work with a field modulo a degree
k irreducible monic polynomial, F [x]/h(x). Now we have all the above figures
in the modulo h(x) regime. y and z are fields and since we are working in a
modulo h(x) regime, p2 will be a degree k polynomial.

The new curve, Rx(y, z), is picked as yD−z where D is a large degree picked
later appropriately.

15-4



5 PV-code (Correlated RS codes)

• Given: h(x) a monic irreducible degree k polynomial in Fq(x), D and
x1, x2, · · · , xn. Pick field Fq, (k ≤ n ≤ q)

• Message: A polynomial p1 ∈ Fq(x) of degree less than k.

• Encoding: p2 = pD
1 (modh(x)); P1 → {p1(xi), p2(xi)}n

i=1.

• Decoding Problem:

– Given: {(xi, yi, zi)}n
i=1.

– Find: List of all degree < k polynomials p1, s.t. |{i|(xi, yi, zi) =
(xi, p1(xi), p2(xi)}| ≥ t elements, where p2 = pd

1(mod(h(x)). We
need to solve the above for as small a t as possible.

5.1 Decoding algorithm

• Step 1: Find Q(x, y, z) 6= 0, where h(x) does not divide Q(x, y, z) s.t.

– Q(xi, yi, zi) = 0,∀i ∈ [n]

– degreex(Q) ≤ k
2
3 n

1
3

– degreey(Q) ≤ n
k

1
3

– degreez(Q) ≤ n
k

1
3

Note that the constraint that h(x) does not divide Q(x, y, z) is not hard
to satisfy. If the resulting solution from the above equations gives us a
Q(x, y, z) which h(x) divides, then we can generate another Q̄(x, y, z) =
Q(x,y,z)

h(x) which satisfies the above degree properties. We can continue this
process until we get a Q which h(x) does not divide.

• Step 2: Let Qx(y, z) = Q(x, y, z)(modh(x)). Qx(y, z) ∈ E[y, z] where E is
a field in F [x]|h(x). Substitute yD = z. Now define, Px(y) = Qx(y, yD).
Now we are looking for the points that are zeros of this polynomial. Find
all pi ∈ E s.t Px(pi) = 0 and output all such pi. This is clearly a poly
time operation.

5.2 Analysis

We derive the final result with a sequence of simple claims.

Claim 1: Solution to Step 1 exists and can be found.

This is obvious.

Claim 2: Qx(y, z) must not be identically zero.

15-5



This is obvious from the definition, Qx(y, z) = Q(mod h(x)). Since from con-
struction, h(x) does not divide Q(x, y, z), Qx(y, z) is not identically zero.

Claim 3: Px(y) 6= 0.

Note that this may not be the case if z − yD divides Qx(y, z). But is this
possible? Since degreey(Qx) ≤ (n

k )
1
3 , picking D > n

k

1
3 ensures that z− yD does

not divide Qx since it does not contain a yD term in it.

Claim 4: Px(p1) = 0, if p1 satisfies S = {i|p1(xi) = yi and p2(xi) = zi} >

2k
2
3 n

1
3 , where p2 = pD

1 mod h(x)

So we have Q(xi, p1(xi), p2(xi)) = 0,∀i ∈ S. What does this tell about g(x) =
Q(x, p1(x), p2(x))?

Clearly the degree of g is ≤ 3k
2
3 n

1
3 . But, since |S| > 2k

2
3 n

1
3 , we can con-

clude that g(x) ≡ 0. Hence, Qx(p1(x), p2(x)) = 0mod h(x) and as a result
Sx(p1mod h, p2mod h) = 0 and thus px(p1) = 0.

6 Things to ponder

• What did we achieve with this construction?

• What is the rate of the above code?

• What is the achievable ratio of errors.

• What would happen if we add more correlated polynomials p3, p4, · · ·?

15-6


