
6.440 Essential Coding Theory March 19, 2008

Lecture 13
Lecturer: Madhu Sudan Scribe: Ankur Moitra

1 Overview

Last lecture we proved the Johnson Bound using a combinatorial argument,
and in this lecture we will demonstrate how to algorithmically list-decode Reed-
Solomon Codes and achieve the Johnson Bound.

2 The Johnson Bound

In the last lecture we proved that if a code C is an (n, k, d)q code, then this
code is also (p, L) list decodable for

p = 1−
√

1− d

n

and L is a fixed polynomial in n. This is known as the Johnson Bound. An
equivalent condition is that for all y ∈ {0, 1}n, there are at most L = poly(n)
codewords c ∈ C contained in the ball of radius pn centered around y. Then a
received message y can be list decoded by outputting all codewords contained
in B(y, pn).

However the combinatorial proof of the Johnson Bound did not yield an
efficient algorithm for performing list decoding. The only algorithm that can
be recovered from this proof is to brute force list decode by enumerating all
possible codewords, and outputting all the codewords contained in the ball
B(y, pn). In this lecture we will see that the Johnson Bound can be achieved
for Reed-Solomon Codes.

An important note is that the Johnson Bound is an existential result. And
there are (n, k, d)q codes that can achieve a larger list-decoding radius (for
L = poly(n)) than the radius guaranteed by the Johnson Bound. We will
see examples of these codes later in this class.

3 List Decoding Reed-Solomon Codes

Reed-Solomon Codes are (n, k, n − k + 1)q codes for q is a prime power and
q ≥ n. Then the Johnson Bound implies that these codes can be

(1−
√
k − 1
n

,L)

13-1

list decoded. Asymptotically, this implies that if there are t >
√
kn indices

that agree with the original codeword transmitted, that we can find at most L
codewords such that the original codeword is contained in this list.

The problem is to find this list algorithmically, given the received message.
We will work towards this goal, achieving better and better guarantees for the
list decoding radius until the Johnson Bound is achieved.

4 An Algebraic Representation

Suppose that the vector y is received. yi is the evaluation (possibly corrupted by
noise) of the polynomial on the symbol αi. The first goal in list-decoding Reed-
Solomon Codes is to express the received symbols algebraically as a low-degree
polynomial rather than as a set of points.

Lemma 1 For all sets of n points {αi, yi}n1 , there exists a bivariate polynomial
Q which is not identically zero such that degx(Q), degy(Q) ≤

√
n and such that

Q(αi, yi) = 0 for all i.

Proof Represent such a low-degree polynomial Q as

Q(x, y) = Σ0≤i,j≤
√

nqi,jx
iyj

There are (
√
n + 1)2 > n total coefficients, which are free variables. Now

consider the constraints that Q(αi, yi) = 0 for all i. Each such constraint is a
homogenous linear constraint:

Σ0≤i,j≤
√

nqi,jα
i
ly

j
l = 0∀l

These constraints are homogenous, and consequently the linear system is
consistent. There are exactly n linear constraints, and because there are strictly
more free variables, this guarantees the existence of a non-trivial (not all qi,j
are zero) solution.

This proof actually implies that we can find such a low degree polynomial Q
in polynomial time, because the coefficients can be found by solving a system
of linear equations.

5 Using the Algebraic Representation

We will factor the low degree polynomial Q to find all codewords that agree in
at least t indices with the received message.

Lemma 2 Suppose Q is a non-trivial, bivariate polynomial such that degx(Q) ≤
D, degy(Q) ≤ D and that Q(αi, yi) = 0∀i. Also assume that the pairs (αi, yi)
are distinct. Then for any univarite polynomial p that has degree at most k and
when evaluated on α agrees with y on at least t > (k + 1)D indices, y − p(x)
divides Q(x, y)

13-2

Proof Consider Qx(y) = Q(x, y), a polynomial in y such that coefficients
are in the polynomial ring F [x]. Then Qx(y) ∈ (F [x])[y]. Using the Division
Algorithm, y − β (where β = p(x) ∈ F [x]) divides Qx(y) iff Qx(β) = 0.

Then define g(x) = Qx(p(x) = Q(x, p(x)) ∈ F [x]. The term xDyD will
be the dominating term in calculating an upper bound for the degree of g(x).
deg(g(x)) ≤ D +Dk = (k + 1)D.

Now consider any point αi such that p(αi) agrees with yi. For such a point,
g(αi) = Q(αi, p(αi)) = Q(αi, yi) = 0. By assumption, there are at least t such
points and these αi must be distinct because the pairs (αi, yi) are distinct by
assumption, and the polynomial p cannot evaluate to both yi and yj on αi = αj .
If t > (k + 1)D, also by assumption, then this implies that g(x) = 0, and this
yields the desired claim.

6 An Algorithm for List Decoding Reed-Solomon
Codes

These lemmas yield a first algorithm for list decoding Reed-Solomon Codes:

Find Q 6= 0 such that degx(Q), degy(Q) ≤
√
n and Q(αi, yi) = 0∀i

Factor Q, and report all polynomials p such that y − p(x) divides Q

A number of classical results yield algorithms that can factor bivariate poly-
nomials in polynomial time. See the References section.

Our first lemma implies that such a bivariate polynomial Q exists, and can
be found in polynomial time. Our second lemma implies that we can find all
polynomials p such that p agrees with y on t > (k+1)

√
n indices, in polynomial

time - because for all such polynomials p, y− p(x) will divide Q and y− p(x) is
irreducible, and consequently will be contained in our factorized list for Q.

The size of the list that we output will clearly be polynomial in n. In fact the
list will be size at most

√
n because degy(Q) ≤

√
n. And if at most n−(k+1)

√
n

errors occured, then the original codeword (and corresponding polynomial) will
agree with y in at least (k+ 1)

√
n indices and will be output by our algorithm.

7 Optimizing Parameters

In our first algorithm, we chose a bivariate polynomial Q that minimized the
degree in x and the degree in y equally. This yields a trivial algorithm if k ≥

√
n,

and in this section we will optimze parameters to get closer to the Johnson
Bound.

Claim 3 For all sets of n points {αi, yi}n1 , and for any Dx, Dy such that (Dx +
1)(Dy + 1) > n, there exists a bivariate polynomial Q which is not identically
zero, degx(Q) = Dx, degy(Q) = Dy, and such that Q(αi, yi) = 0 for all i.

13-3

The proof follows immediately from the proof of our first lemma, and is
again constructive because such a polynomial can be found in polynomial time.

Claim 4 Suppose Q is a non-trivial, bivariate polynomial such that degx(Q) ≤
Dx, degy(Q) ≤ Dy and that Q(αi, yi) = 0∀i. Also assume that the pairs (αi, yi)
are distinct. Then for any univarite polynomial p that has degree at most k and
when evaluated on α agrees with y on at least t > Dx + kDy indices, y − p(x)
divides Q(x, y)

Again, this proof follows immediately from the proof of our second lemma.
The only change is that the bound on deg(g(x)) is deg(g(x)) ≤ Dx + kDy.

Then we can choose Dx =
√
nk,Dy =

√
n
k and this yields an algorithm that

recovers all polynomials p(x) that agree with y, the received message, on at
least 2

√
kn indices.

The above optimization in parameters relied on jointly choosing degx(Q) and
degy(Q) to minimize degx(Q) +kdegy(Q), while still guaranteeing the existence
of a bivariate polynomial that satisfies the required conditions. However, we can
improve this by realizing that the polynomials xiyj and xi + yj have identical
degrees in each variable, but the second polynomial yields a much smaller bound
on the degree of g(x) = Q(x, p(x)). The real cost for any term xiyj is i + kj,
and the total cost for Q is the maximum cost. So we can optimize our choice of
monomials in Q by choosing greedily until at least n + 1 monomials are in Q,
and then choosing the coefficients for these monomials to fit our polynomial to
the constraints.

Theorem 5 (Sudan 97) There exists a polynomial time algorithm to list de-
code Reed-Solomon Codes from t >

√
2kn agreement

Claim 6 For all sets of n points {αi, yi}n1 , and for any C = {qi,j} such that
|C| > n, there exists a bivariate polynomial Q(x, y) = Σi,jqi,jx

iyj which is not
identically zero, qi,j 6= 0⇒ qi,j ∈ C, and such that Q(αi, yi) = 0 for all i.

Claim 7 Suppose Q(x, y) = Σi,jqi,jx
iyj is a non-trivial, bivariate polynomial

such that qi,j 6= 0 ⇒ i + kj ≤ D and Q(αi, yi) = 0∀i. Also assume that the
pairs (αi, yi) are distinct. Then for any univarite polynomial p that has degree
at most k and when evaluated on α agrees with y on at least t > D indices,
y − p(x) divides Q(x, y)

Choose all pairs i, j such that i + kj ≤
√

2kn. These are the integer points
contained in the triangle bounded by the x-axis, y-axis and the line x + ky =√

2kn. There are more than 1
2 ×

√
2n
k ×

√
2kn = n such points. This yields

an algorithm that recovers all polynomials p(x) that agree with y, the received
message, on at least

√
2kn indices. And this yields a proof of the theorem.

13-4

8 Reaching the Johnson Bound

In this section we will reach the Johnson Bound for list decoding Reed-Solomon
Codes. We will do this by finding a higher degree bivariate polynomial Q such
that Q has a multiplicity m zero point at αi, yi for all i.

Theorem 8 (Guruswami, Sudan 98) For any t >
√
kn there exits a poly-

nomial time algorithm to list decode Reed-Solomon Codes from t agreement.

Define a polynomial ¯Q(x, y) = Q(x + αi, y + yi). Then ¯Q(x, y) has a mul-
tiplicity m zero at 0, 0 iff ¯Q(x, y) has no support on monomials of total degree
≤ m − 1. Then the constraint that ¯Q(x, y) has a multiplicitym zero at 0, 0
implies that for all coefficients ¯qi,j such that i+ j ≤ m− 1 are zero.

Claim 9 There are
(
m+1

2

)
pairs (i, j) such that i, j ≥ 0 and i+ j ≤ m− 1.

Then each point αi, yi imposes
(
m+1

2

)
linear constraints on ¯Q(x, y) which

are also linear constraints on Q(x, y). Then there are
(
m+1

2

)
×n total linear

constraints, and we can choose D = (m+1)
√
nk such that the triangle bounded

by the x-axis, the y-axis and the line x+ yk ≤ D contains at least

1
2
× (m+ 1)

√
nk × m+ 1

k

√
nk >

(
m+ 1

2

)
n

points (i, j) such that i+ kj ≤ D.

Claim 10 Suppose Q(x, y) = Σi,jqi,jx
iyj is a non-trivial, bivariate polynomial

such that qi,j 6= 0 ⇒ i + kj ≤ D and Q(αi, yi) = 0 with multiplicity m for
all i. Also assume that the pairs (αi, yi) are distinct. Then for any univarite
polynomial p that has degree at most k and when evaluated on α agrees with y
on at least t > D

m indices, y − p(x) divides Q(x, y)

The proof for this follows immediately from the proof of our first lemma,
because each zero is counted with multiplicity m.

This yields the Johnson Bound, because D = (m + 1)
√
nk and for each i,

Q(αi, yi) = 0 with multiplicity m. Then we can recover all codewords that agree
on t > m+1

m

√
nk indices in polynomial time. And as limm→∞ this achieves the

Johnson Bound, and all codewords that agree on t >
√
kn can be recovered.

And this yields a proof of the theorem

References

[1] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon codes
and algebraic-geometric codes. Foundations of Computer Science, 1998.
Proceedings.39th Annual Symposium , vol. 45(6), pp. 28-37, 1998.

[2] A. K. Lenstra. Factoring multivariate integral polynomials. Theoretical
Computer Science, vol. 34, pp. 207-213, 1984.

13-5

[3] M. Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction
Bound. Journal of Complexity , vol. 13(1), pp. 180-193, 1997.

13-6

