6.440 Essential Coding Theory

Lecture 12

March 17, 2008

Lecturer: Madhu Sudan Scribe: Mihir Kedia

Note: These are an initial draft of scribe notes for lecture 12. They will be
updated later in the semester.

1 The Story So Far

To date, we’ve almost completely resolved Shannon theory (errors occur at ran-
dom.) Shannon showed an upper bound and matching existential lower bound
with his seminal coding theorem, and last week we saw Forney’s algorithmic
result for actually constructing optimal codes in polynomial time.

TODO: Insert diagram from class notes

Unfortunately, we haven’t been so lucky with Hamming theory. There’s
a reasonably-sized gap between our MRRW upper bound and GV existential
lower bound, and our Forney/Justensen constructions are lower still. Even
worse, using these codes to correct errors cuts their utility in half.

TODO: Insert second diagram.

Today we're going to explore list-decoding, which relaxes our notion of per-
fect decoding. This will allow us to shorten the gaps considerably.

2 Definition

The essence of list decoding is that the decoder is allowed to produce a list of
possible decodings. If there aren’t too many errors during transmission, this list
is required to contain the correct decoding among its members.

Which of the above models are we using here? We’re concerned with correct-
ing errors, so it might seem like Shannon — however, our analyses will assume
that errors are produced maliciously (like Hamming.)

Let’s define this more formally. An encoding function E : ¥%¥ — ¥ is (p, L)
list-decodable if there exists a list-decoding function D : " — (X¥)L such
that for m € ¥, ¢ € Ball(0,pn), m € D(E(m) + ¢).

We can also look at this pictorially. Each dot in the following diagram
represents a member of a language C' € X™. The surrounding circles have radii
pn.

TODO: Diagram

The code C is (p, L) list-decodable if Vy € X", |Ball(y,pn) N C| < L.
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3 Characteristics

There are a couple of interesting points to note before analyses.

e The above definition is combinatorial, rather than computational. In par-
ticular, D is not required to be efficient — this allows us to use the brute-
force searching strategies replete in earlier classes.

e We usually fix L to be poly-sized; we want to analyze how R varies as p
changes for (p, poly) list-decodable codes.

4 Matching Bounds

With this relaxation, we can find matching upper and lower bounds. The upper
bound is just an application of Shannon’s Converse Coding Theorem.

Theorem 1 The rate of a (p, poly) list-decodable code is at most 1 — H(p).

Proof If we had a list-decodable code that violated this, we could convert
it into a Shannon-style code by randomly picking an element in the list. This
new code would have inverse-polynomial error probability — Shannon’s theorem
claims that this error rate would have to be inverse-exponential. B

We're going to show two different non-constructive proofs of a matching
lower bound. This bound is due to [Zyablov, Pinskei, Blinovskii].

Theorem 2 There exist (p, poly) list-decodable codes with rate R = 1—H (p)+e€
for any e.

Proof We show that a random code has the property we need. Pick C' C 0,1"
with |C| = 2" codewords at random.

For any fixed y, the probability that the ith codeword is in Ball(y,pn) is
approximately:

9H (p)n
27L

Note that this probability is exponentially small in n! The probability that
there exist L codewords in this ball, then, is just:

9Rn
9(H(p)—1)n < (9WH((P)—1n y 9Rn\L
(7)< x 21tn)

_ o(Hp)-1)n

Finally, the probability that there exists some value of y with L codewords
within its ball is at most the following, via the Union bound:

2n(2(H(p)—1)n % 2Rn)L
Using the fact that the first term is exponentially small, we arrive at
2n(2-emk
This goes to 0 if L = Q(1) W
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5 Linear Lower Bound

The above proof also works (with modification) for linear codes: in that case, the
second term above would be bounded by the probability that there exist log L
independent codewords in Ball(y, pn); carrying everything through, it works if
L>2¢.

We can do even better, though. Consider the following greedy construction:

Pick basis vectors by, ba, ..., by € {0, 1} greedily as follows.

e Let C; (the codewords to date) equal span{by,...,b;}

e Let n;(y) = |Ball(y,pn) N C;|. For any y, n;(y) measures the current
number of codewords within radius pn.

e Define a potential function ®; = E,[2"®)]. This function uses exponential
weighting to discourage proximity.

e Pick a linearly independent b;;; to minimize ®;, given by,...,b;
e Stop when & = 2, returning C},

Note that we're going to cheat a bit in the following analyses: we assume
that b;11 was picked uniformly at random. Not sure how to fix this..

Theorem 3 Cy, is (p,n) list decodable

Proof If not, there would exist a value of y with more than n codewords
within its radius. This would contribute more than 2"+1 /2" = 2 to the potential
function, which would be a contradiction. H

How many steps will this procedure take? We can bound the gain of the
potential function. (Note: not entirely clear on first lemma; will revise soon)

Lemma 4 B, [®;11] < P2

Proof
1
Qi1 = 272y2"i(y)+"i(y+bi+1)
= %zygm(y)gm(ywm)
11 e ‘
By [@iv1] = 272721,“21!27%(@/)2 i(Y+bit1)
1
= 4—”222”i<2>.zy2ni<y)
= q;?
]
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Theorem 5 For k = (1 — H(p))n — €, this construction takes O(L) steps.

Proof First, let’s calculate the value of 3. Note that even at the beginning,
QH(p)n
k n
Using the above lemma, ®;, < (1 + ®¢)? . If k is sufficiently small, we can
use the (1 + z)” = 1 4 zn approximation and arrive at &, <1+ 2k<I>%k. Thus,
the maximum number of steps taken is O(1). B

the zero vector is part of the code — thus, the value of &g is 1 +

6 Johnson Bound (unfinished)

How do codes we've seen earlier in the class fit into this new setting? The
analyses turn out to be fairly difficult. Better if we could relate known work on
these codes (e.g. their distance) to list-decodability. The Johnson bound does
just that.

Theorem 6 Given an [n, k,d], code C, C is (1 — /1 — 2, poly) list-decodable.

Proof Will arrive soon.. l
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