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1 Overview

In these notes we will discuss Forney’s general minimum distance (GMD) de-
coding of concatenated codes [1]. We will also discuss a method of Forney for
algorithmically achieving capacity on the binary symmetric channel (BSC) using
concatenated codes.

2 Naive Decoding of Concatenated Codes

Suppose we have a concatenated code where the outer code is an [N, K, D]g
code, and the inner code is an [n, k,d], code, with @ = ¢*. In section 4 we
will see that the concatenated code is actually an [Nn, Kk, Dd], code, but for
now we will show the weaker property that it is an [Nn, Kk, Dd/2],. Consider
the naive decoding procedure which uses the inner decoding scheme on each
received symbol, then applies the outer decoding scheme.
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Figure 1: A diagram of the naive decoding scheme.

In Figure 1, the received encoded message is r, which may have errors. Each
block r; is decoded using the inner code, to arrive at a new message . If r
had no errors, this stage of decoding would yield a message y. We now map
each codeword g; of the inner code to the appropriate symbol of the outer code,
giving Z. We then decode Z to the nearest codeword of the outer code, at which
point we can recover a message m corresponding to that codeword.

Let e; denote the number of errors in r;. We state the following claims
without proof; their proofs follow easily from definitions.

Claim 1 Ife; < d/2, then g, = y;. B
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Claim 2 If there are fewer than D/2 blocks i with §; # y;, then the overall
decoding procedure is successful.

Corollary 3 Fewer than Dd/4 errors in the encoded message implies that fewer
than D /2 blocks i € [N] have e; > d/2. R

By Claim 2 and Corollary 3, fewer than Dd/4 errors implies successful de-
coding. Thus, the concatenated code is a [Nn, Kk, Dd/2], code.

3 Achieving Capacity on the BSC

Recall the binary symmetric channel from Lecture 2 depicted in Figure 2. A
binary message is sent, and each bit is flipped independently at random with
some probability p.
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Figure 2: A binary symmetric channel where each bit flips with probability p.

We showed in Lecture 2 a theorem of Shannon which states that we can
transmit at a rate R as long as R = 1 — H(p) — ¢ for some & > 0. Furthermore,
we showed that such a rate is possible with decoding error probability at most
exp(—eN), where N is the block length. We will now investigate a method
of Forney to achieve this result algorithmically. First though, we show how to
achieve a failure probability of at most 1/poly (V).

First, by brute force we find a code with message length n = ¢’ log N for some
constant ¢’ to be determined later with rate R = 1 — H(p) — ¢ and decoding
failure probability at most exp(—ec’log N). We know such a code exists by
Shannon’s theorem. We then break our message into N/(¢log N') blocks each
of size ¢’ log N then encode each block separately. The probability of a decoding
error on block i is at most exp(—ec’log N) < N~ for ¢/ = O((c + 1)/e).
Thus, by a union bound, every block is successfully decoded with probability at
least 1 — 1/N°.

To declare that this encoding procedure can be done in polynomial time,
we need to discuss how to find a code with message length n = ¢'log N in
polynomial time with the properties Shannon’s theorem guarantees. We cannot
try all subsets of codewords as there are too many. We omit the details, but
one can prove that a linear code exists achieving Shannon capacity. Linear
codes are however still not a small enough space of codes to search over as the

11-2



generator matrix will have Q(log? N) entries, and thus there would be N (og N)

over which to search. It turns out that not only does a linear code exist achieving
Shannon capacity, but a linear code exists achieving capacity whose generator
matrix is a Toeplitz matrix. Toeplitz matrices are m X n matrices A satisfying
Aijj = Aj—1-1 for all 4,5 > 1. Thus, such a matrix is fully specified by
O(c'log N) bits, and we can thus brute force try every such generator matrix
in polynomial time. We omit the details, but our proof from Lecture 2 can be
modified to show that capacity-achieving codes with Toeplitz generator matrices
exist (essentially the reason is that each codeword is random and codewords will
be pairwise independent, and our proof from Lecture 2 only relied on pairwise
independence of codewords), and we can also calculate the code’s decoding error
probability in polynomial time.

The above procedure only achieved decoding error probability at most 1/poly(N).
We now show Forney’s method of achieving capacity. The outer code will be
a Reed-Solomon code with rate 1 — ¢ and block length and alphabet size N.
Such a code has K = (1 — ¢)N and distance eN. The inner code will be an
[n, k,d]z code with 28 = N and rate 1 — H(p) — &; we can use the above dis-
cussion to find such a code by brute force. The concatenated code has rate
(1—¢)(1—H(p)—¢) >1— H(p) — 2¢. Each block of the concatenated code has
length n = log N/(1—H(p)—¢) blocks, and there are NV such blocks. The proba-
bility that we err in decoding the ith block is at most 1/poly(NN), so by Chernoff
bounds the probability that at least e N/2 blocks are incorrectly decoded is at
most exponentially small, giving the desired result.

4 Generalized Minimum Distance Decoding

GMD decoding is a decoding procedure for the same concatenated code from
section 2 where the outer code is a Reed-Solomon code. Recall that an erasure
is an error where a symbol is corrupted to a ’?’ so that we know that an error
occurred at a particular symbol. The key idea in GMD decoding is that it
is easier to decode a channel with erasures than one with errors since we can
restrict decoding to the unerased symbols. More concretely, suppose we use a
Reed-Solomon code with distance D and have at most s erasures and ¢ errors.

Claim 4 If s+ 2t < D then we can successfully decode.

Proof Ignoring the erased symbols, we are left with output that is equivalent
to a codeword of an [N — s, K, D — s] Reed-Solomon code, so we can imagine
that we have t errors on such a codeword. Thus, we can decode as long as
t < (D — s)/2, which is the claim. H

We use the same notation from Figure 1. We also define é; to be the “ap-
parent” number of errors in block 7, i.e. A(r;, §;).

The decoding algorithm is now defined as follows. After computing g, with
probability min{%7 1} we declare r; to be an erasure. Otherwise, we keep ;.
We will now show that in expectation, the number of erasures plus twice the
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number of errors is at most D as long as ), e; < Dd/2. By Claim 4, this will
show that the concatenated code is an [Nn, Kk, Dd] code.

Forney’s analysis is as follows. Define u; to be the event that an erasure is
declared on block i. Let v; be the event that we keep §; and ; # y; (thus, we
have an error). We thus want to show that E[) , u; +2),v;] < D. First we
observe that if y; = g;, then e; = é;. Also, if y; # ¥;, then e; > d — é; by the
triangle inequality on 7, y;, §;, using the fact that A(y;, 7;) > d.

Claim 5
€

. 1<
Elu; +2v;] < a2

Proof We split the proof into two cases.

Case 1 (§; = y;): In this case we have Flu;| = &;/(d/2) = e;/(d/2), and
E[’Ui] = 0

Case 2 (y; # y;): Here we have E[u;] = €;/(d/2) and E[v;] =1 — ¢é;/(d/2),
so Elu;+2v;] = 2—¢;/(d/2). We now use that —¢&; < e;—d. Thus, 2—¢;/(d/2) <
2+e;/(d/2) —d/(d/2) =e;/(d/2). B

Overall, we thus have ), E[u; + 2v;] < Y. e;/(d/2) = (3, €:)2/d. Thus,
as long as > e; < dD/2, the expected sum of erasures and twice the number
of errors is at most D. We can thus say that there exists a configuration of
declaring erasures such that the number of erasures plus twice the number of
errors is at most D so that by Claim 4 the concatenated code is an [Nn, Kk, Dd)
code. We now show how to derandomize the decoding algorithm. We note that
nowhere did we even use pairwise independence between the blocks. Thus we
pick a random number z € [0, 1] and use the same x as a threshold in comparison
to €;/(d/2) to decide for each block whether to declare it an erasure or not. The
number of such thresholds that actually affect our decision is simply the number
of blocks, so we can afford to try all such thresholds x rather than picking one
at random. We then decode using each such x, and given our overall decoding
we can encode again to determine whether the sum of erasures and twice the
number of errors was in fact at most D. At least one z must satisfy this
constraint, and we use the decoding from that x.
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