6.440 Essential Coding Theory March 10, 2008

Lecture 10
Lecturer: Madhu Sudan Scribe: Aleksander Mqdry

1 Today: Algorithmic problems

Today we will define the basic algorithmic problems arising in Coding Theory.
We will also present decoding algorithm for Reed-Solomon codes.

2 Main algorithmic tasks in Coding Theory

There is a couple basic algorithmic tasks that we are performing in Coding
Theory:

1. Encoding - having a message m we want to obtain its encoding c,,

2. Error-detection - having received some string y we would like to determine
whether there occurred some error during transmission i.e. whether y
corresponds to a codeword

3. Erasure-correction - assuming that some parts of transited string got
erased (i.e. in respective positions we have ’?’ instead of an actual letter)
we want to infer what were the letters erased

4. Error-correction - having received some string y we would like to determine
what is (are, in case of list decoding) the codeword(s) whose transmission
could occur in y

We say that we ’know’ the actual code if we know how to perform all of the
above tasks efficiently. Here efficiently means in polynomial time (later we will
look sometime at linear time implementations of some codes) or more precisely,
we would like to have a polynomial-time generator that for given length of the
codeword will generate (small) circuits that perform the above task. Note that
according to this requirement we don’t ’know’ the codes that correspond to
Gilbert-Varshamov bound even if we know that they exist.

3 The case of linear codes

In case of linear codes the first three tasks turn out to be easy provided that we
have a generator matrix G € FFxn,

10-1

3.1 Encoding

Having some message m € F* the encoding process consists of simple multipli-
cation y = m - G, then y € F” is the codeword corresponding to m. This is in
contrast with the situation of the general, non-linear codes where neither of this
task has a standard solution.

3.2 Error-detection

As it was already suggested in the Problem Set I, having G we can easily compute
a matrix H € F**("=F) such that GH = 0. Now, if y € F” is received string
then yH = 0 iff y is a codeword. So, if the number of errors that can occur
in the considered channel is not larger than d — 1, where d is the distance of
considered code, then yH = 0 iff there was no error during transmission. In this
way we obtain an efficient method for detecting errors.

3.3 Erasure-correction

To state the erasure-correction problem more precisely, let y € {F,?}" be re-
ceived string, where ? means that the corresponding letter has been erased (note
that we assume that erasure is the only possible error here). We would like now
to compute a message m € F* such that for all 1 < i < n either y; =7 or
(mG); = y; i.e. m is such that its encoding sent through the channel could
result in y.

We solve this problem by reducing it to solving a linear system as follows.
Let I C [n] be the subset of indices of y that do not correspond to ?. We form
a linear system:

z-Gr =yr

where z is the vector of k variables and G, y; correspond to G, y respectively
with removed columns being not in . Clearly, any solution x* to this system
gives us a solution to original problem.

The question is: how many erasures can we handle when interested in de-
termining uniquely the message m 7

First, we note that certainly not more than d — 1. The reason is that if we
take a codeword c¢* of the code that has minimal, but non-zero, weight then
w(c*) = d. So, since 0% is a codeword in every linear code, by considering
erasures that erase all the non-zero entries of ¢* we see that then there will be
at least two solution ¢* and 0F.

On the other hand, if our channel can cause at most d — 1 erasures then,
upon transmitting an encoding of a codeword ¢, by definition of d, there is no
other codeword ¢’ whose encoding differs from encoding of ¢ on at most d — 1
places. So, there is a unique (and thus correct) solution to the above linear
system.

10-2

4 The decoding problem

We are focusing now on the task of error-correction. This tends to be the hardest
of the problems arising in code design - even in case of linear codes there is no
standard approach to it. We have two different definitions of decoding problem
(we state them in the setting of linear codes, but they easily extend to the
general case):

e (Shanon - average-case complexity): In this regime, given y € F" we
would like to find m € F* such that Pr[y|mG transmitted] is maximal,
where we assume here that the message m is chosen at random from some
distribution. In other words, we want to solve the problem for ‘most’ y.

e (Hamming - worst-case complexity): Here we have, given y € F" find
m € F*¥ such that A(y, mG) is minimal. In other words, we want to be
able to decode even if the pattern of errors is adversarial. Of course, in
order to make the whole process decode the message that was actually
sent, we need to have the number of errors to be no more than L%J
Sometimes, we consider a bit relaxed notion of decoding when we allow
the algorithm to return a short list of possible messages (including the one

that was actually sent) - then the number of errors can exceed this bound.

4.1 Decoding for Reed-Solomon codes

For the case of Reed-Solomon codes the task of decoding boils down to the
following problem.

Given C = (F,a1,...,ap,k) and r = (r1,...,7,) € F?, find a polynomial
p(z) = Zf:_ol m;x' (deg(p) < k — 1) such that # errors = {i|p(c;) # yi} < t,
where ¢ is the maximal number of possible errors introduced by the channel. In
our proof we assume that ¢ < L"T_kj and recall that n — k is the distance of
Reed-Solomon code.

The first polynomial-time (in fact O(n?)) algorithm for this problem was pro-
posed by Peterson in 1960 - this is a remarkable fact since back then few people
felt any inclination to look for ’efficient’ algorithms. To be precise, Peterson
algorithm was proposed for BC'H codes, but a subsequent work of Gorenstein-
Zierler (1963) showed that for proper choices of the field, the Reed-Solomon
codes can be seen as both the generalization and a specialization of BC'H codes.
So, with this insight Peterson algorithm may be applied to Reed-Solomon codes.
The next result in this topic is due to Berlekamp (1970). He showed an O(n?)
algorithm, which was subsequently applied in other areas by Massey (so the
algorithm is sometimes referred to as Berlekamp-Massey algorithm). In the
early 80s Justesen proposed an O(n log? n) algorithm. Finally, in 1986 Welch
and Berlekamp simplified significantly the Berlekamp algorithm and made its
complexity to be O(nt) where ¢ is the actual number of errors that occurred.
In 1992 a paper by Gemmell and Sudan, among other results, presented a nice
exposition of the Reed-Solomon decoding algorithm, which we will follow now.

10-3

The key idea behind decoding the codes is so called error-locating polynomial
E(z). To define it, let us fix some r € F™ such that A(r, (p(a;))?,) <t <
|25%]. Let Err = {i|p(c;) # r;}. Then E(z) = Hicpr (z—0;) and deg(E(z)) <
t. We should note the following relations between p(z) and E(z).

1. For all i, p(e;) = 7; or i € Err. The latter is equivalent to saying that
E(a;) = 0. So, we can conclude from this that for all i, E(o;)p(ei) =
E(Ozi)’l“i.

2. If we define N(z) = E(z)p(z) then deg(N(z)) <k -1+t
3. E#0 and deg(E(z)) < t.

The problem with F(z) and p(z) is that we don’t know neither of them. In
fact, knowledge of one of them is equivalent to the knowledge of the other. So,
the recipe for the decoding algorithm is just forgetting about p(x) and trying to
find any pair of polynomials that satisfy the above conditions when treated as
N(z) and E(z) respectively. More precisely, the algorithm will look for a pair
of polynomials (N(z), E(z)) such that

1. For all i, N(o;) = E(a;)r;
2. deg(N(z)) <k—-1+t
3. E(z) # 0 and deg(E(z)) < t.

Then, after finding such (N(z), E(z)) the algorithm outputs the result of
£

First, we check whether this algorithm can be efficiently implemented. Divi-
sion of polynomials can be easily performed in polynomial-time. On the other
hand, computing the pair (N(x), E(z)) can be seen as a solving of a linear sys-
tem, where we treat the coefficients of the polynomial as variables and impose
an additional condition that E(x) # 0 (in fact we can just impose a constraint
that the highest-order coefficient of E(z) is 1).

Now, it remains to convince ourselves that such algorithm returns the correct
answer. We start with the following lemma:

if such exists. Otherwise, it just gives up.

Lemma 1 A pair (N(x), E(x)) satisfying all three condition and such that
gé;)) = p(x) exists.
Proof

It is sufficient to take F(z) as defined at the beginning and N (z) = E(z)p(x).

It is worth noting that Lemma 1 guarantees existence, but not uniqueness. In
fact, given any pair being a solution, if we multiply it by the same polynomial
(whose degree is small enough to not violate the degree constraints that we
want to impose on (N(x), E(z))) then we obtain another pair that satisfied the
desired conditions. However, the next claim shows that any solution is good for
us.

10-4

Claim 2 If (Ny(z), E1(z)) and (Na(z), E2(x)) are both satisfying all the re-

; s Nl(x) . NQ(CE)
quired conditions then Frla) = Bolo)

Proof We will show that Ny (z)Es(z) = Na(z)E1(x) which is equivalent to
desired statement. In order to do it, we note that deg(Fs(x)Ny(x)) <t+k+t—
1=k+ 2t —1 < n by our assumption that ¢ < L”Tfkj By the same reasoning
deg(Er (z)N2(z)) < n. Now, we notice that, by condition 2, for all 1 < i < mn,
Ni(a;)Ea(a;) = Er(a;)Es(a)r; = E1(a;)Na(ay). So, if these both products
of polynomials are equal in n different points and have degree at most n — 1,
we can conclude, by the Fundamental Theorem of Algebra, their equality on all
points. W

This concludes the proof that the above algorithm works.

4.2 Power of algebraic approach?

As we saw in the previous section, the usage of algebraic methods leads to
very simple, but powerful results. To, at least partially, explain the reason
of this success we should note that the key property of polynomials that we
used is the fact that the degree of the product of polynomials grows additively
instead of growing multiplicatively as it is usually the case in the vector space
settings. More precisely, if for vectors u,v € F" we define an operation u*v =
(ugv1, ..., unv,) and then we will generalize it to sets of vectors S,T C F™,
S+«T = {uxvlu € S,v € T}. We will notice that for two vector subspaces
S, T of dimension k and [respectively, dim(S xT) = dim(span(S*T)) < k-1
and there are examples where this inequality is tight. However, if S and T
correspond to Reed-Solomon codes with dimensions k& and t + 1 respectively,
then, since its connection to polynomials, dim (S xT") < k + ¢ only.

10-5

