Today: Algorithms in Coding Theory

- Algorithmic Problems
- Erasure Decoding
- Decoding Reed Solomon Codes
- Abstracting for Other Algebraic Settings

Algorithmic Problems

1. Encoding:

2. Detect Errors:

3. Correct Erasures

Complexity of 1, 2, 3.

- "Easy" for linear codes, given \(\mathbf{G} \)

Encode:
\[
\begin{align*}
\mathbf{m} \in \{0,1\}^k \\
\downarrow \\
\mathbf{mG} \in \{0,1\}^n
\end{align*}
\]

Detect: Compute \(\mathbf{H} \) s.t. \(\mathbf{G} \cdot \mathbf{H} = 0 \)

Given \(\mathbf{y} \) output \(\text{OK} \) if \(\mathbf{y} \cdot \mathbf{H} = 0 \)

Erasure Correct: Given \(\mathbf{r} \in \{0,1,?\}^n \), let \(\mathbf{G}' = \mathbf{G} \) with \(? \)ed columns deleted.

\[
\mathbf{y}' = \mathbf{y} \quad \text{(?)}
\]

Then \(\mathbf{m} : \mathbf{mG}' = \mathbf{r}' \)

Claim: if \(\#\{?\} < \Delta(C) \) then \(\mathbf{m} \) is uniquely determined.
Subtleties?

1. Works only for linear codes...
2. Assumes \(G \) known.
3. Assumption 2 not always valid. Eg. GI bound (valid when you prove it! Construct \(b \) uniformly, efficiently)
4. Is problem well defined for non-linear codes? My “defn.”: Code is “constructive” if can construct encoding circuit \(C: \{0,1\}^k \rightarrow \{0,1\}^n \) in poly time.
Decoding?
- Not so simple -- can't seem to handle generic g
- Even for special g's -- can only arrest limited # errors
- But these may be sufficient for
 \[
 \text{Hamming} / \text{Shannon} / (\text{Elia})
 \]

Shannon Problem: Given y find m that
maximizes $\Pr[y|m]$.
O.K. to be wrong on some y
Provided $\Pr[y]$ (exponentially) small,

[[Average case complexity / Worst-case]]
Hamming Problem: Given y find m that

minimizes $\Delta(y, m6)$.

O.K. to be "wrong" if

$$\min_m \left\{ \Delta(y, m_6) \right\} > \frac{\Delta(c)}{2}$$

or some ℓ

But if $\# \text{ errors} \leq \ell$, must get it right!

[[Worst-Case Complexity]]

[[if $\ell > \frac{\Delta(c)}{2}$ can produce small list

including every m s.t. $\Delta(y, m_6) \leq \ell$]]

Seems hard, but can be done e.g., for RS codes

[[Peterson, Berlekamp, Massey, S., Guusuami-S.]]
Reed-Solomon Decoding

Problem

Given: RS code = (F, α, ..., α_n, k)

\[r = (r_1, ..., r_n) \in F^n \] (List all)

Output: Deg. k-1 poly \(p(x) = \sum_{i=0}^{k-1} x^i \)

\[\# \text{errors} = \sum | p(a_i) \neq r_i | \leq t \]

[Today: \(t \leq \frac{n-k}{2} \); so \(0 \leq \text{list size} \leq 1 \).]

Algorithm: Peterson 1960: Defined “P”

Welch-Berlekamp 1986

Gemmell-Sudan 1992

[Kinden, gentler...]

Key Idea: "Error Locator Polynomial"

Define: $\text{Err} \triangleq \Sigma \{ i | p(\alpha^i) + r_i \}$

(Warning: Don't know $p(\cdot)$ & so don't know Err! But still ...)

$\Xi(x) \triangleq \prod_{i \in \text{Err}} (x - \alpha^i)$

(Extended Warning: Don't know $\Xi(x)$ either ...)

$\Xi(x)$ has nice properties
Properties of $E(x)$

1. $\forall i, \quad p(\alpha_i) \cdot E(\alpha_i) = r_i \cdot E(\alpha_i)$

2. $\deg E \leq t$; $E \neq 0$

3. $N(x) \leq p(x).E(x)$ is a poly of
 $\deg N \leq t+k-1$

1'. $\forall i, \quad N(\alpha_i) = p(\alpha_i) \cdot E(\alpha_i) = r_i \cdot E(\alpha_i)$

Algorithm: Ignore all references to "$p" above

1. find (N, E) !

\underline{Step 1}: find N, E s.t.

(i) $\forall i, \quad N(\alpha_i) = r_i \cdot E(\alpha_i)$

(ii) $\deg N \leq k+t-1$; $\deg E \leq t$; $E \neq 0$

\underline{Step 2}: Output $p(x) = \frac{N(x)}{E(x)}$ (if $\deg \leq k-1$ poly)
Analysis: Correctness? Efficiency?

Efficiency: Step 1: Just a big linear system

Step 3: Ratios ... Long Division.

Correctness:

Lemma 1: \(\exists (N, E) \) satisfying (i), (ii) provided

errors in \(i \leq t \); with \(N/E = p \).

Proof: Take \(E \) to be error locator; \(N = E \cdot p \).

Lemma 2: if \(\exists \) two pairs \((N_1, E_1) \), \((N_2, E_2) \)

satisfying (i), (ii); then \(N_1/E_1 = N_2/E_2 \)

(provided \(N > k + 2t \)) \(\iff \) \(N_1 \cdot E_2 = N_2 \cdot E_1 \).

Proof: \(\forall i \)

\[N_i(\alpha_i)E_2(\alpha_i) = \gamma_i E_1(\alpha_i).E_2(\alpha_i) \]

But both are deg.

\[= E_1(\alpha_i).N_2(\alpha_i) \]

Identical \(\iff \) agree at \(n > k + 2t \) points \(\iff \) polys.
Abstraction:

Key property of polynomials:

- Product of deg d_1, d_2 deg poly is $d_1 + d_2$ poly.

For $U, V \in \mathbb{F}^n$:

- Let $U \ast V \triangleq (U_1 V_1, U_2 V_2, \ldots, U_n V_n)$
 = coordinate-wise product.

For sets $S, T \subseteq \mathbb{F}^n$:

- $S \ast T \triangleq \{ U \ast V \mid U \in S, V \in T \} \subseteq \mathbb{F}^n$

Key Property:

- $S = \text{RS code, dim } k$ \iff $S \ast C \leq \text{dim } k + t$
- $T = \text{RS code, dim } t + 1$ \iff $k + t$

(Generically \ldots expect \text{dim } k \cdot t)
Abstract Decoding

Given linear code \(C = [n, k, d] \), for a \(\epsilon \)-error decoding pair \((\xi, N)\) if (i) \(\dim(\xi) > \text{large}_{1} \),

(ii) distance \((N) > \text{large}_{2} \),

(iii) \(E \ast C = N \),

(iv) \(\text{dist}(\xi) > \text{large}_{3} \),

Exercise: Fill these values in

Algorithm: Given: \(r = (r_{1}, \ldots, r_{n}) \);

(i) Find \(E \in \xi; \ N \in N \); \(E \neq 0 \) s.t. \(E \ast r = N \).

(ii) Let \(y_{i} = r_{i} \) if \(E_{i} \neq 0 \); \(y_{i} = ? \) o.w. \(\text{ERASURE-DECODER}(y) \).
Claim: Yields decoding algorithms for all algebraic codes; Corrects roughly \(\frac{d}{2} \) errors.
E.g. even for BCH codes!! (Exercise)

Notes:
1) Good News: Can correct \(\frac{d}{2} \) errors in RS codes.
 (Algorithm not totally intuitive will see more later.)
2) Actually correct \(s \) erasures & \(t \) errors, simultaneously provided \(s + 2t < d \)
3) Can now inn. correct \(\frac{d_1}{2} \cdot \frac{d_2}{2} \) errors in concatenated codes if outer = RS of dist \(d_1 \)
 & inner = dist. \(d_2 \) code
 Will show this & do better next time.