WELCOME TO CODING THEORY!!

LECTURER: MADHU Sudan
madhu@mit.edu

TA: SWASTIK KOPPARTY
swastik@mit.edu

URL: http://people.csail.mit.edu/madhu/ST08

Mailing List: Exists. Mail madhu/swastik to get added
ADMINISTRIVIA

- 3-0-9 IT Level Credit, but no EC's, no TQE's. (Anything is possible by petition)

- To pass you must
 - turn in all psets (3-4)
 - do a project
 - scribe one lecture
 - participate actively in lectures

- CHECKLIST
 - fill up Signup Sheet
 - Signup for scribing early
 + read instructions on web site.
Error-Correcting Codes [Hamming/Shannon]

Hamming's Problem (roughly)

- Want to store bits on magnetic storage device

- Bits get corrupted, 0 → 1 or 1 → 0 but rarely. Say one in every block of 63 bits.

- How can you store information so that it is not lost?

(Why 63? Will see....)
Naive Solution

Repeat every bit 3 times

Encoding

message

Codeword

majority

errors

Decoding

received word
Good News:

- Can encode 21 bit message as 63 bit codeword.

- Encoding/Decoding simple (polytime computable).

Bad News:

- Rate \(\frac{\text{message length}}{\text{codeword length}} = \frac{21}{63} = \frac{1}{3} \)

Not so great!

Can we do better?

How much better?

Will encoding/decoding be easy?
Hamming Solution - 1

- Break message into 4 bit chunks
- Encode each chunk as follows:

$$\mathbf{m} \rightarrow \mathbf{m} \cdot \mathbf{G}$$

where $$\mathbf{m} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \in \{0,1\}^4$$

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- Surprising Property:

 $$\forall \mathbf{m}_1 \neq \mathbf{m}_2, \ \mathbf{m}_1 \mathbf{G} \neq \mathbf{m}_2 \mathbf{G}$$ differ in

 $$\geq 3$$ bits [Will prove later]
- **Rate**: 4 bits → 7 bits
 36 bits → 63 bits
 \[\text{Rate} \approx \frac{4}{7} \quad \text{(will do better)} \]

- **Encoding** — simple

- **Decoding? More Magic**

- received word

 7 bits

\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix}
\]
\(x_H = \text{index of flipped bit in binary!} \)

\[\text{Voila!!} \]

- Is this the best one can do?
- No!

Hamming Solution 2:

```
\[ E \]
\[ G \]
\[ 6 \]
```

```
\[ H \]
\[ 6_3 \]
```

```
\[ 6 \]
```

```
\[ 6_3 \]
```

```
\[ E \]
```

```
\[ G \]
```

```
\[ 6 \]
```

```
\[ H \]
```

```
\[ 6_3 \]
```
Properties:

1. \(\forall m_1 \neq m_2 \in \{0, 1\}^{57} \)

 \(m_1, G \) & \(m_2, G \) differ in \(\geq 3 \) coordinates.

2. If a received word \(w \) has \(\leq 1 \) bit flip, then \(w H = \text{index of flipped coordinate} \).

Conclude:

- Can achieve rate = \(\frac{57}{63} \)

- Is this best possible?

\[\text{[Hamming]}: \text{YES! No Encoding/Decoding scheme does better!} \]
Summary of Hamming’s Work

- Construction of “Error-correcting Code”
- Method for Encoding/Decoding
- Proof/Investigation of Optimality/Limits
 [Modelling critical to prove “optimality”]

Note: [Shannon] has all the same features with slightly different model/emphasis.
Will see next week.
Hamming's Notions:

1. Hamming Distance:
 - Let Σ be some finite set
 - $\Sigma = \{0, 1\}$ in earlier example,
 - $\Sigma = \{0, 1, 2\}$ (bytes) in CDs
 - Let Σ^n be set of n-letter words
 - over Σ [Ambient Space]
 - For $x, y \in \Sigma^n$
 - $\Delta(x, y) = \#$ coordinates where x, y differ
 - $\Delta(x, y) = |\{i \mid x_i \neq y_i\}|$
\[\Delta = \text{Hamming Distance} \]

\[S(x, y) = \frac{\Delta(x, y)}{n}. \quad [\text{relativized distance}] \]

- **Fact:** Hamming distance is a metric
 1. \(\Delta(x, y) = 0 \iff x = y \)
 2. \(\Delta(x, y) = \Delta(y, x) \)
 3. \(\Delta(x, y) + \Delta(y, z) \geq \Delta(x, z) \)

- **Conclude:** Can bring in geometric intuition to think about Hamming distance.
Hamming Notions (Contd.): Codes

\[C \subseteq \mathcal{E}^n \quad \text{[set of codewords under some encoding]} \]

- \(C \) is \(t \)-error correcting if any pattern of up to \(t \) errors can be corrected [by some, possibly inefficient, decoding method]

- Formally:
 - \(\text{Ball}(x,t) = \{ y \in \mathcal{E}^n \mid \Delta(x,y) \leq t \} \)
 - \(C \) is \(t \)-error correcting if \(x = y \in C \) \(\text{Ball}(x,t) \cap \text{Ball}(y,t) = \emptyset \).
C is \(e \)-error detecting if whenever
\[1 \leq \# \text{ symbol errors} \leq e, \]
it can be detected that errors have occurred.

Formally:
\[\forall x \in C \quad \text{Ball}(x, e) \cap C = \{x\}. \]
\[\Delta(C) \quad (\text{Distance of Code}) \]

\[= \min \left\{ \Delta(x, y) \right\} \]

\[x \neq y \quad \text{for } x, y \in C \]

[Hamming] \[x, y \in C \]

Proposition: \(C \) is \(t \) error-correcting \iff \(C \) is \(2t \) error-detecting \iff Distance of \(C \) is \(\geq 2t + 1 \).
Proposition: for \(x \in \mathbb{Z}^n \) \(\exists \leq = \exists_{0,1}\exists \) \(\Rightarrow \exists (x,t) = \sum_{i=0}^{t} \frac{n}{i} \equiv \text{Vol}(n,t) \)

Proposition: \(\exists = \exists_{0,1}\exists \): if \(C \) is \(t \) error-correcting then

\[|C| \leq \frac{2^n}{\text{Vol}(n,t)} \]

Can use above to conclude

\[\text{Rate} = \frac{57}{63} \text{ is optimal in our example} \]
Rest of this course:

Follow Hamming's Plan

- Construct Codes (correcting more errors)
- Show Limitations
- Construct decoding algorithms

(Non-Hamming Part)

- See how codes are generally useful
 (in Math. & CS)
Some Claims & Disclaimers

- Motivation is more mathematical & less engineering; Not a substitute for communication/coding course, but complementary.

- It is a graduate class. Some math maturity is required.

- E.g. lots of texts – we will follow none!

- Hopefully, will have fun.