Simultaneous Localization and Mapping (SLAM)

RSS Lecture 16 April 7, 2014

Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8

Navigation Overview Where am I? Where am I going? Localization Assumed perfect map, but imperfect sensing How can I get there from here? Planning Assumed perfect map, sensing, and actuation Exploration (Mapping and Localization) Mapping SLAM (Today)

Lecture Overview

- SLAM Problem statement
- Why is SLAM hard?
- Scan matching
- Example SLAM results
- What SLAM won't solve

SLAM Problem Statement

- Inputs:
 - No external coordinate reference
 - Time series of proprioceptive and exteroceptive measurements* made as robot moves through an *initially unknown* environment
- Outputs:
 - -A map* of the environment
 - A robot pose estimate associated with each measurement, in the coordinate system in which the map is defined
 *Not yet fully defined

SLAM Problem -- Incremental
State/Output:

Map of env't observed "so far"
Robot pose estimate w.r.t. map

Action/Input:

Move to a new position/orientation
Acquire additional observation(s)

Update State:

Re-estimate the robot's pose
Revise the map appropriately

SLAM Aspects

- What is a measurement?
- What is a map?
- How are map, pose coupled?
- How should robot move?
- What is hard about SLAM?
- But first: some intuition

Example

- SLAM with laser scanning
- Observations
- Local mapping
 - Iterated closest point
- Loop closing
 - Scan matching
 - Deferred validation
 - Search strategies

... But what's missing?

- Is topology enough?
- Are topology and geometry enough?
- ... What else is there?

Summary

- SLAM is a hard robotics problem:
 - Requires sensor fusion over large areas
 - Scaling issues arise quickly with real data
- Key issue is managing *uncertainty*
 - At both low level and high level
 - Both continuous and discrete
- Saw several SLAM strategies
 - Local and global alignment
 - Randomization
 - Deferred validation
- SLAM is only part of the solution for most applications (need names, semantics)