Localization

RSS Lecture 12 Monday, March 17, 2014 Prof. Teller

Text: Siegwart and Nourbakhsh Ch. 5 Dudek and Jenkin Ch. 7

Navigation Overview

• Where am I?

- Localization (today)

- Assumes perfect map, imperfect sensing

- What have I observed in my travels?
 - Mapping (Wednesday)
 - Assumes perfect localization
- How can I get there from here?
 - Planning (last week, and later in term)
 - Assumes perfect map, sensing, and actuation
- Can I build a map, and localize, on-line?
 - Yes; using SLAM (in a few weeks)
 - Assumes no prior knowledge of the world

Basic Localization

- Open-loop pose estimation:
 - Maintain pose estimate based on expected results of motion commands (no sensing)
- Dead reckoning:
 - Use proprioception (odometry, inertial) to estimate pose w.r.t. *initial* coordinate frame
 - Multiple error sources:
 - Wheel slip, gear backlash
 - Noise (e.g. from encoders)
 - Sensor, processor quantization errors
 - Pose error accumulates with time and motion
 - Typically ~ a few percent of distance traveled

г	Passive	
Г		Active
	Wall corner	Sun, North star
Natural	Texture patch	Magnetic dipole
	River bend	Pressure gradient
	Earth's surface	Mineral vent
	Surveyor's mark	Chemical marker
	Retro-reflector	Radio beacon
Artificial	Lighthouse (day)	Lighthouse (night)
	Trail blaze	LORAN
	Buoy, channel marker	GPS

Dilution of Precision

- General phenomenon that sensor, landmark, and motion geometry can *degrade* solution quality, even for a *fixed set* of observed landmarks
- Geometric DOP = GDOP
 Also Vertical DOP, Horizontal DOP etc.
- How to take GDOP into account?
 - If sufficiently many landmarks are available, *select* those with minimal GDOP
 - Decouple pose, solve separately, recombine

