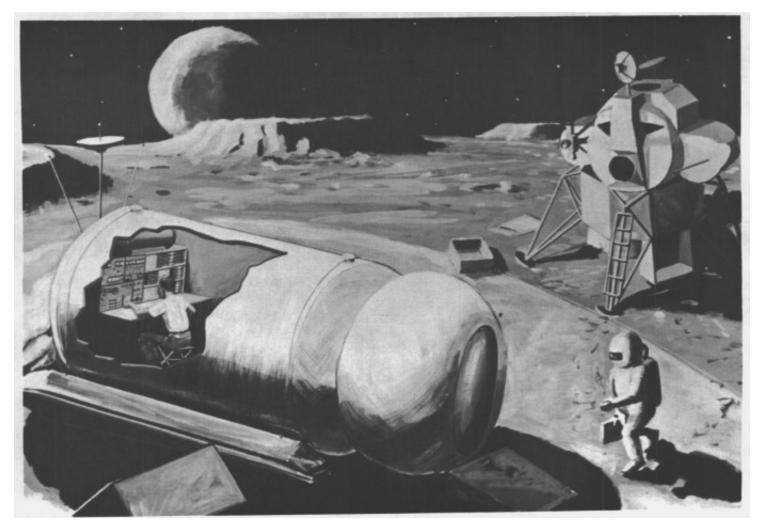
The RSS Course Challenge

RSS Lecture 11 Wednesday, 12 March 2014 Prof. Seth Teller

Overview


- Historical context
- RSS Challenge scenario, requirements
- What you are provided
- Schedule through end of term
- Graded challenge milestones
- Q&A

Why Challenges?

- Determine longitude while at sea
 - Solved in (read the book Longitude)
- Emperor's food preservation prize
 - Offered F12,000 (hundreds of \$K today)
 - Solved in ; led to canning industry
- Prize for ship-sinking in war-time

 Led to development of first submarine
- Ivory substitute for billiard balls
 Catalyzed celluloid, led to plastics industry
- Many modern variants (DGC, X-prize etc.)

Build a Shelter on Mars

Goodyear STEM (Stay-Time Extension Module) concept, 1979

Build a Shelter on Mars

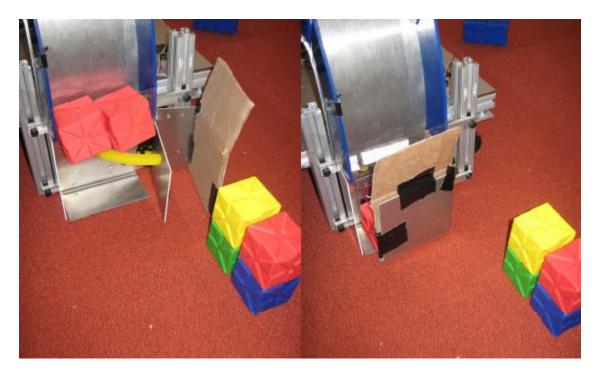
- Prior delivery of *materials*, at planned
 & unplanned locations; some destroyed
- Coordinates of *fiducials* established (via satellite) throughout environment
- Robot is then deposited within arena
 Can assume known or unknown location
- Robot must then:
 - Move itself within the environment
 - Identify and collect available materials
 - Transport them to a suitable site
 - Arrange simple shelter or structure there

Challenge sub-tasks

- Plan and Navigate:
 - Navigate, starting from known location (team places robot)
 - Optional: handle unknown start location (staff places robot)
 - Form motion plans around mapped, unmapped obstacles
- Identify Construction Site:
 - Define site location *a priori*, or have robot choose it online
- Find Objects:
 - Detect objects of known types at expected locations
 - Detect objects at unknown locations, identify object types
- Gather and (Optionally) Store Objects:
 - Collect blocks on, under, or within robot body
- Transport Objects:
 - Convey blocks to construction site (all, serially, in groups)
- Construction:
 - Create a simple structure of your choice (e.g. group, row, open/closed wall, stack, multi-story wall) at construction site
- Optional:
 - Any technical aspect on which your team wishes to focus

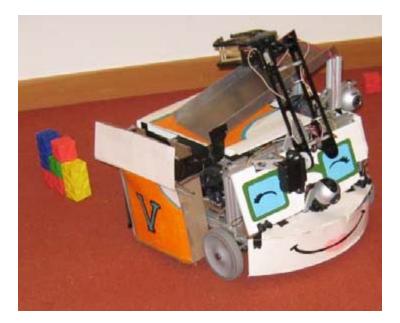
- Robot through final lab, and other parts
- ROS source, staff solution code
- Map of challenge environment, blocks
- Fiducial locations, color coding
- Rules / constraints

- Materials
 - Standard RSS microbot, sensors, etc.
 - Delrin, Lexan, sheet metal, plywood etc.
 - Any parts needed from RSS, EECS stockroom
 - \$50 budget for outside components (use MIT's tax-free number, save receipts)
 - Absolutely no cardboard or duct tape (decorative or cosmetic cardboard is OK)
- Shop access
- An approximate map of challenge area
- Fiducial locations, color coding
- Rules / constraints

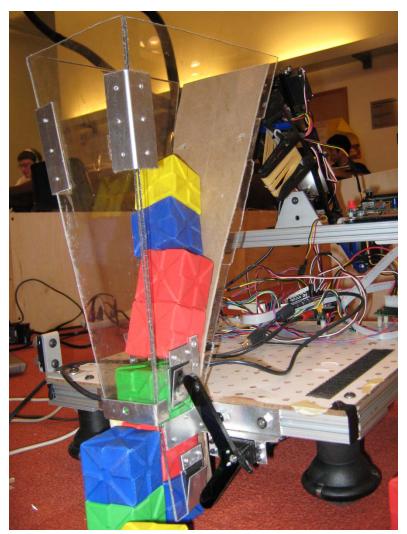

Shop Access

- MIT has many shops
 - EECS shop, hobby shop, MechE, Aero/Astro...
- And fabrication facilities
 - Waterjet cutter, Laserjet cutters, 3D printers, ...
- RSS does not arrange shop access...
 - Why? Scaling, fairness
- ... BUT we urge you to be resourceful, i.e. coordinate access through home dep'ts, UROPs/club/independent activities

Examples from Past Years

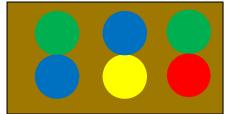


Block marshalling, servocontrolled release mechanism



Alternative design from another team

Examples from Past Years


Block marshaller

Funneling mechanism

- Materials
- Shop access
- An approximate map of challenge area
 - Global coordinate frame
 - Polyline perimeter of operation area
 - Mapped obstacles (some will be unmapped)
 - Mapped blocks (some will be unmapped)
 - Fiducials
 - Start location (optional)
- Fiducial locations, color coding
- Rules / constraints

- Hardware
- An approximate map of challenge area
- Fiducial locations, color coding
 - Two vertically-stacked colored balls
 - Coordinates and radius of each ball

- Use blob detector from visual servo lab
- Rules / constraints

- Hardware
- An approximate map of challenge area
- Fiducial locations, color coding
- Rules / constraints
 - Team must be ready to run when called
 - Team has 2 minutes to stage and launch bot
 - Bot must run autonomously for 10 minutes
 - Bot can't make destructive/irreversible changes
 - Walls will not move (much) if bot hits them
 - Each team should *narrate* its own bot's run
- External sensors, code?

Challenge Schedule 2014

- This Friday 14 March:
 - Forum on expectations for team-written challenge proposal
 - Challenge Design Document outline (CDO) assigned, due 3/21
- Next Friday 21 March:
 - Challenge Document *Outlines* due in Forum (one per team)
- Wednesday 2 April:
 - CDOs returned with engineering comments
- Friday 4 April:
 - Forum: From CDO to CDD; CDD assigned, due 4/11
- Wednesdays 9, 16, 23 & 30 April:
 - Ungraded/Graded Challenge Milestone Demos 1, 2, 3, 4 (in lab)
- Friday 11 April:
 - CDDs due
- Monday 5 May:
 - Timed and non-graded challenge dry runs in lab
- Wednesday 7 May:
 - Timed and graded challenge final runs in lab
- Monday 12 May:
 - Component breakdown and stowing, in lab (mandatory)

Graded Milestone Demos

- As specified in team-written Challenge proposal
 - Will be graded by staff
- Wednesday 9 April:
 - Ungraded Challenge milestone demo (in lab)
- Wednesday 16 April:
 - Graded challenge milestone demo (in lab)
- Wednesday 23 April:
 - Graded challenge milestone demo (in lab)
- Wednesday 30 April:
 - Graded challenge milestone demo (in lab)
- Monday 5 May:
 - Timed, ungraded Challenge dry runs (in lab)
- Wednesday 7 May:
 - Final timed and graded Challenge runs
 - Narrated by each team, to entire class (no slides)