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Today

* Problem statement
* Motion planning module in context
+ Bug algorithms for point robots in the plane

» Motion planning as search
— Visibility graph algorithm
— Discretization and A*
— Potential Field method




Motion Planning Intuition

» What series of motions will get robot to goal?
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* Are there cases in which no such motion exists?
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Bug Algorithm (for Point Robots)

+ Simple algorithm based on four assumptions:
— Perfect knowledge of direction and distance to goal
— Ability to distinguish freespace from obstacle contact
— Ability to move along an arbitrary obstacle boundary
— Ability to detect whenever a location is revisited

* Which assumptions are strong? Weak?
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Bug Motion Planning Algorithm

* Repeatedly advance toward goal
» Upon encountering an obstacle:

— Completely circumnavigate it counter-clockwise, then

depart from point P that minimizes distance to goal
» Advantages? Drawbacks?

* Many variants: Bug2, BugDist, BugTangent...

Goal

Complete Motion Planning

« Formal statement of motion planning problem:

— Compute a collision-free path for a rigid or articulated
moving object among static (or dynamic) obstacles

* |deally we desire a “complete” motion planner:
— If a solution exists, planner is guaranteed to return it
— Otherwise, planner indicates that no solution exists

« CMP is known to be computationally intractable

— In general it requires exponential running time in the
number of DOFs (articulation, # of obstacles etc.)

— ... Even with access to perfect, global information!




Planning Under Uncertainty

* How can robot move from starting configuration
to a goal configuration despite uncertainty:
— Imperfect prior knowledge
— Imperfect perception
— Imperfect reasoning
— Imperfect execution
— Imperfect prediction

Deliberative Architecture

Sense

Local data about state of world, robot

Model Source of goals?
Global world representation / a

Plan -

Representation of desired action

Act

Execution of desired action

Modified world, robot state




Off-Line Motion Planning

» Today, we’ll make some strong assumptions:
— Robot has perfect map of start, obstacles, goal
— Robot can localize itself globally with no error

Goal

Observation

» Suppose all obstacles are polygons.

* If there exists a collision-free path from start to
goal, then there exists a piecewise-linear path
involving only start, goal and obstacle vertices

Goal
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Visibility Graph Algorithm
» Construct graph G = (V, E)
—V = {obstacle vertices} u {Start, Goal}
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Visibility Graph Algorithm
» Construct graph G = (V, E)
—V = {obstacle vertices} u {Start, Goal}
— E = edges (v;, v;) disjoint from obstacle interiors

Goal

Start




Find Shortest Path in Graph G

» Use rooted at start vertex
Goal
Start
Algorithm
Single-source Shortest Path
1 function (G, w,s) /I Graph G, weights w, source s
2 for each vertex v in V[G] // Initialize d[ ], previous, S, and Q
3 dv] ;= /I Vertex v is not yet reached
4 previous[v] := undefined /I ... sothere’s no path to it yet
5 d[s]:=0 /I Source reachable with zero cost
6 S :=empty set /I Set of vertices reached so far
7 Q:=setof all vertices /I Set of candidate vertices
8 while Q is not an empty set /' While unreached vertices
9 u :=vix vin Q with // O(n) search or Fibonacci heap
10 S := S union {u} /I Vertex u reached
11 for each edge (u, v) /I For each neighbor v of u
12 if /I If lower-cost path to v exists via u
13 d[v] := d[u] + w(u,v) /I ... update costtov
14 previous[v] ;= u /I ... and update path record




Application of Shortest-Path

St ‘ AVA .

*  What do we use as edge weights?

*  Memory usage?

* Running time?

*  What major assumption have we made about the robot?
» Does this algorithm extend naturally to polyhedra in 3D?

A Point Robot?

« Can't fit the robot into a zero-area point ...
— Today we’ll address robot extent via discretization
— Next time we’ll see a much more elegant method




Discretizing Polygonal Obstacles

« How should we discretize freespace into a grid?
— Is this just like rendering polygons in graphics?

— To avoid collisions, we must account for

Discretizing Polygonal Obstacles

+ For today, assume robot is a disk with radius R
— Then for planning purposes, robot has only 2 DOFs (why?) @

« Then a grid cell represents freespace if: B
— It does not overlap with any obstacle, i.e. {
— it )

+ Algorithm:

— Pick any grid cell that is

known to lie in freespace

— Do a breadth-first search (or \

“flood-fill”) from the start cell

— As each cell is visited by the Z ‘t

search, compute the minimum

distance d to any obstacle edge

- If

otherwise

— Once fill is complete, label any

unreached cells as “occupied”




Planning in Discrete State Space
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* Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search
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Planning as Tree Search
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Planning as Tree Search

.. How can such searching be made effective and efficient?

Move Generation

» Which state-action pair to consider next?

» Shallowest next

— Aka: Breadth-first search

— Guarantees shortest path
— But: storage-intensive

» Deepest next

— Aka: Depth-first search

— Can use minimal storage

— But: no optimality guarantee
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Informed Search — A*

m
“Candidate states”
reachable through
available actions

... but which action T
should robot take
at each timestep?

Informed Search — A*

« Use domain knowledge to bias search order
« Favor actions that might get closer to the goal
» Each state gets assigned an approximate cost

f(x)=@+ h(x)

¢(x) = incurred cost from
start state to graph node x

h(x) = estimated cost
from node x to goal,
aka “heuristic” cost

Example:
= c(X) =3, so f(x) = 22.7
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Informed Search — A*

» Each state x is assigned an approximate cost f:

f00=(c()+(h(x)

c(x) = cost incurred from

start state to graph node x

h(x) = estimated cost
from node x to goal,
aka “heuristic” cost

* Choose the candidate state with the

Cost for another example candidate action is higher:
= C(X) =4, so f(x)=25.1

How to Construct Heuristics

* The more closely the estimated cost h(x)
approximates the true cost h*(x) to the goal,
the more efficient the search will be* ...

BUT:

 In order for A* to find the optimal path, it must
be the case that

« Why? Suppose this was not the case. Then
the search would

* Such an h is called an “admissible” heuristic

*There is a subtle design tradeoff involved here — what is it?
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A Problem with Plans

* We have a plan that
gets us from the
start lto the goal @

» But... what happens if
we depart from the plan?
— We can replan, or:

— We can maintain a policy,
i.e. a data structure that
can produce a plan given
any start location

Potential Field Method

» Real-time collision avoidance method [Khatib 1986]
» Construct scalar potential field throughout freespace

goal location

Repulsion from
obstacle interiors

» Robot moves along of potential field
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|deal Potential Field

We want to construct the potential field so that it:
— Is nearly infinite close to obstacles

— Has a global minimum at the goal (so no local minima)
— Is smooth everywhere

— Does scalar method achieve this?
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If only life were so easy...

Numerical Potential Field

N

= » Assign cost of 0 to goal state
. .
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Initialize all states with cost «

Update each state x so that

f(x) =
(minimize over )
Repeat until convergence
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Numbers shown are for an obstacle-induced cost
of «, and a goal-induced cost of 1 unit per grid cell
(we can also make it costly to approach obstacles)

To plan from any node, simply
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