

Simple Digital Sensors: Contact Switches

- Simplest sensor: 1-bit digital output
- Minimal circuitry, processing
 - De-bounce hardware or software
- Normally open (NO):
 - Current flows when switch is pressed
- Normally closed (NC):
 - Current flows when switch is released
- Many types:
 - Pushbutton, toggle, rocker,
 - knife, Reed, mercury

- Contact sense
 - Trigger on contact with object (bump sensor)
- Limit sense
 - Trigger when a joint is at one end of its range
- Encoders
 - Count shaft revolutions (Reed sensor)
- Orientation
 - Detect if robot has tilted or tipped over (mercury)

Sensor Selection

- Task-dependent issues to consider:
 - Sensor range, rate, sensitivity, resolution, cost
 - Noise and error characteristics
 - Physical properties size/weight/power, mounting
 - Robustness (tolerance of environment conditions)
 - Speed of operation, data reporting/transfer
 - Computational expense of handling sensor data

Summary, What's next

- Reactive and deliberative architectures
- · Introduced sensors, critical to robotics
 - Saw several examples of analog, digital sensors
 - Discussed sensor types, selection criteria
- CDE's returned today
- Wednesday
 - Lecture: System Engineering and Test
 - Lab 3 briefings
 - Lab 4 out