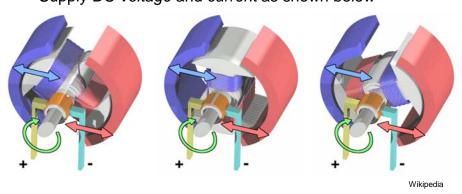
Electric Motors

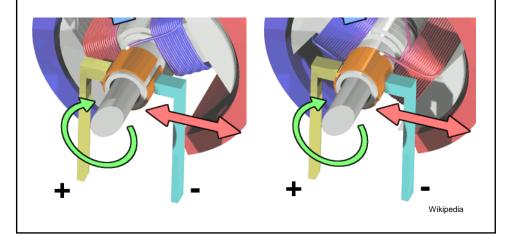
6.141 / RSS Lecture 3 Wednesday, 12 Feb 2014 Prof. Seth Teller

RSS I (6.141J / 16.405J) S14


Today

- DC (permanent magnet) motors
 - Basic principles
 - Characterization
 - Sensing rotation with encoders
 - Choosing one that's adequate ("sizing")
 - Gears
 - Electronic support for control
- Servo Motors
- Stepper Motors time permitting

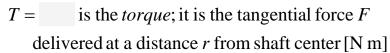
Basic Principles : DC current produces a Orsted Faraday motor (- Magnet; bowl of mercury; stiff wire attached at top - Run DC current through wire; it rotates about magnet · Effect came to be known as "Lorentz force" - Induced force perpendicular to Wire Battery + Current Bar Magnet Battery = UF Phys. 3054 **Faraday Motor** Lorentz Force


DC motor (based upon Lorentz force)

- Wind wire coil around armature to strengthen B field
- Mount armature on rotor; attach rotor to drive shaft
- Enclose rotor and drive shaft within stator
 - Permanent magnet or electromagnet
- Supply DC voltage and current as shown below

Completing a rotation

- Reverse current direction
- Commutator (copper) and brushes (not shown)
- Blue coil is the one in contact with + terminal

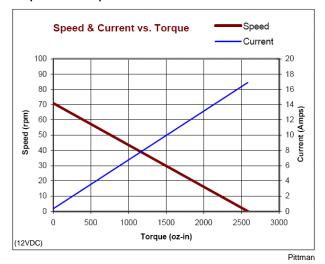

Motor Power, Torque, and Efficiency

 P_e : Supplied Electrical Power, in watts [J/s]

 $P_e =$

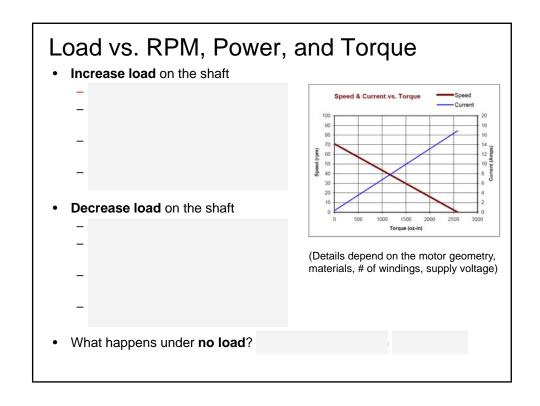
 P_m : Output Mechanical Power

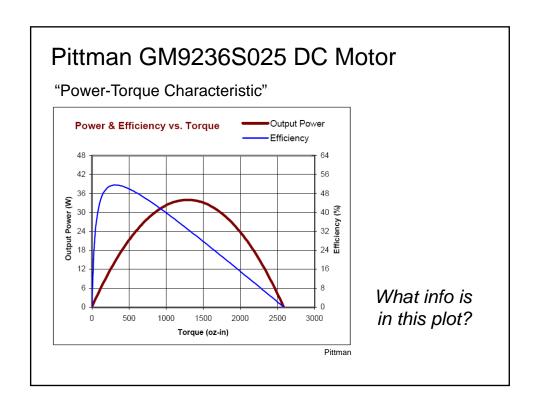
 ω :


Efficiency e = ?

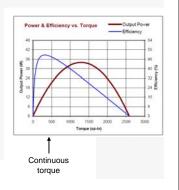
Back-EMF

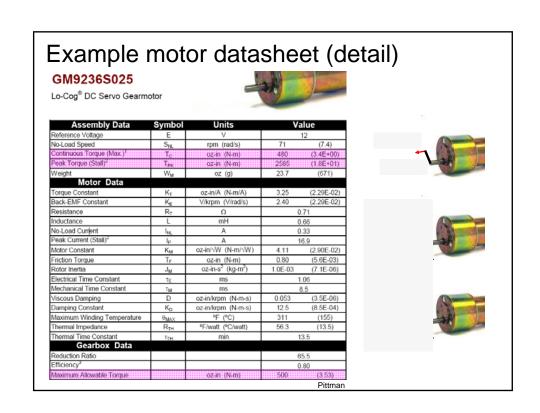
- When a conductor moves within a static magnetic field:
 - Current is produced in conductor
 - Current is called "back-EMF"
 - Back-EMF is to shaft angular velocity, and current supplied by PS
 - Thus as shaft (armature) angular velocity increases, rotation-induced current
 - Thus supplied current from PS
 - Thus as ω increases, torque

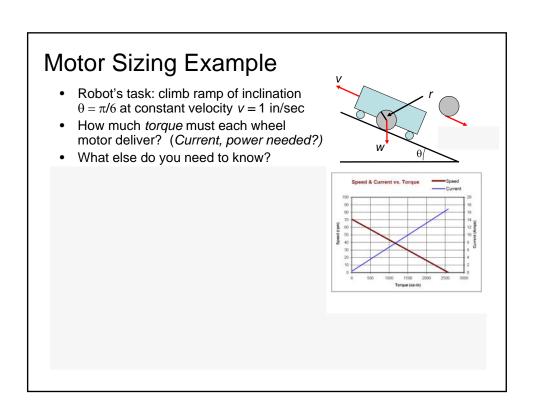

Pittman GM9236S025 DC Motor (12VDC)


"Speed-Torque Characteristic at 12VDC"

What does this plot mean?

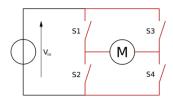

How can we interpret it?




Motor operating regimes

- Continuous torque (480 oz. in. for Pittman motor)
 - _
- Peak torque (oz. in. for Pittman motor)
 - Momentary, intermittent or acceleration torque
 - Torque maximized at

Gearing Down Gearbox: Transmits power mechanically Transforms shaft angular velocity ω and torque T (how?) Gear ratio R = # teeth_{out} / # teeth_{in} Wheel B (follower): ω_{out}, T_{out}



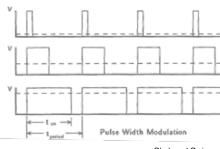
Microprocessor Control of DC Motor

- So far, we've seen only constant +12V DC
- In practice, we control motor *direction* and *speed* by modulating sign and time average of voltage
- Motor direction
- Motor speed

_

Controlling Motor Direction

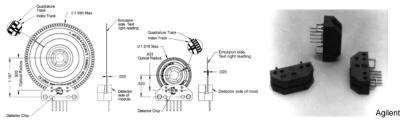
- This circuit is called an
 - In uORC, it's an <u>L6205 DUAL FULL BRIDGE DRIVER</u>
 - Motor direction determined by corner-paired switch that determines direction of potential and thus current flow


H-Bridge Circuit States

- Open
 - No voltage applied across motor M
- Forward
 - V_{in} applied
- Reverse
 - V_{in} applied

Wikipedia

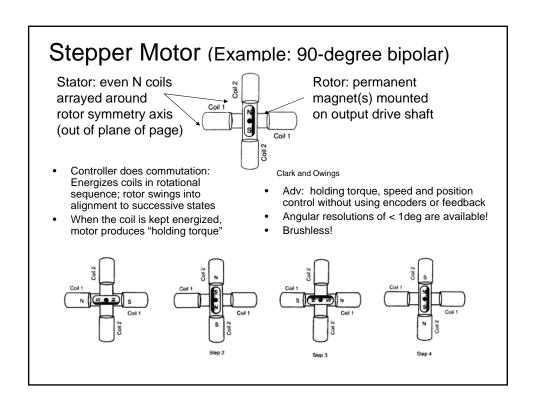
PWM: Pulse Width Modulation


- Apply motor voltage as a square wave at fixed frequency (from 60Hz to 50KHz; Orc uses ~16KHz)
- Control motor speed/power by changing the duty cycle (or pulse width) of voltage signal
 - At 0% duty cycle, motor is off
 - At 100%, full power
 - At 50%, half power etc.
- Effectively produces a timeaveraged voltage signal
- Inductive load of motor smoothes input signal in coils
- Duty cycle: Laptop sends 8-bit value (0..255) to μORC PSOC

Clark and Owings

Sensing: Motor Shaft Encoders

- Report motor shaft speed (easy) or position (harder)
- Codewheel: Circular disk with alternating black and white regions, mounted on motor shaft



- Optical sensor detects codewheel region transitions
- Counting the pulses produced in any time interval yields change in shaft angle (how to compute distance traveled?)
- This is basic odometry used for control & "dead reckoning," or estimation of pose relative to some starting point

Servomechanisms (servo motors, servos)

- DC motor in an integrated package with 3 extra elements:
 - Gearbox between motor shaft and output shaft
 - Provides low-speed, high-torque output
 - Feedback-based position control circuit (pulse-width control)
 - Drives servo to commanded "position" (shaft angle)
 - Shaft angle sensing (potentiometer)
 - · Current sense for torque sensing
 - Limit stops on output shaft
 - Provide mechanical limits on servo's minimum & maximum "position"

Comparison of Motor Types

Type:	Pluses:	Minuses:	Best For:
DC Motor	Common Wide variety of sizes Most powerful Easy to interface Must for large robots	Too fast (needs gearbox) High current (usually) Expensive PWM is complex	Large robots
Hobby Servo	All in one package Variety; cheap; easy to mount and interface Medium power required	Low weight capability Little speed control	Small, legged robots
Stepper Motor	Precise speed control Great variety Good indoor robot speed Cheap, easy to interface	Heavy for output power High current Bulky / harder to mount Low weight capability, low power Complex to control	Line followers, maze solvers

Clark and Owings, p. 29

Supplementary Reading

- Theoretical
 - Foundations of Electric Power,
 J.R. Cogdell
 - Electric Motors and their Controls: An Introduction,
 Tak Kenjo
- Practical
 - Building Robot Drive Trains,
 D. Clark and M. Owings
 - Mobile Robots: Inspiration to Implementation,
 J.L. Jones, B. Seiger, A.M. Flynn

Recap and What's Next

Today:

- Some practical aspects of DC motors
 - Operation, sizing, applications

In Lab:

Continued work on Lab 2

Forum (this Friday):

• Expectations for briefings, collaboration

Next Lecture (Tuesday at 1pm – virtual Monday):

Cameras and low-level vision