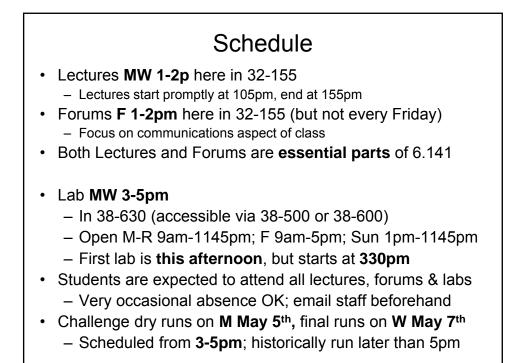
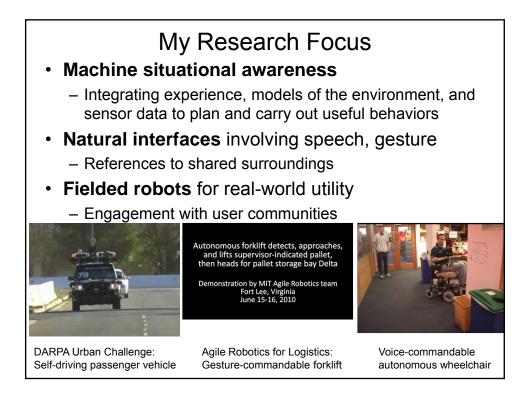
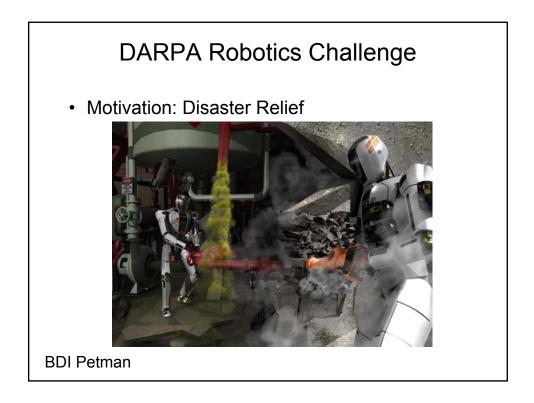


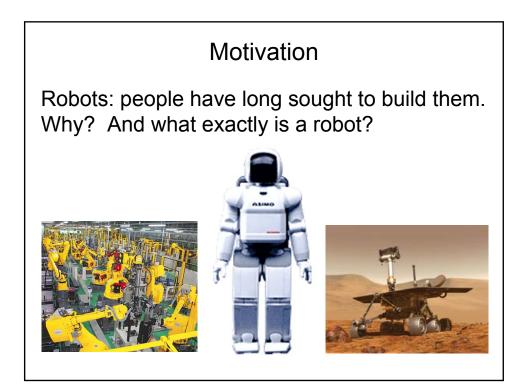
Communication Aspects of RSS

- CI-M "Forum" held most Fridays at 1pm
 Concrete strategies for effective writing, design, reporting
- Challenge Design Exercise (individual)
- Team wiki (brief answers, plots, images, videos &c.)
- · Team briefings (to course staff) for each lab
- Lab checkpoints (in lab, rolling basis)
- Written challenge design (indiv. + team), revision
- Debates (in small groups, with class as audience)
- Reflective report (individual, at end of term)

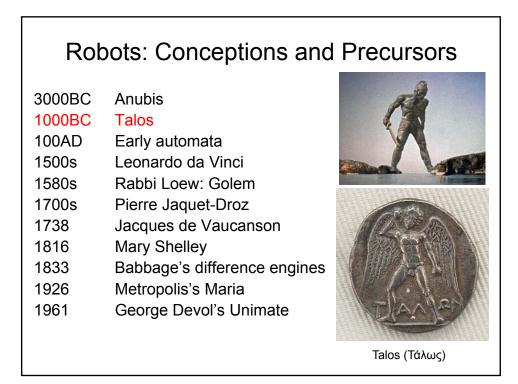

Requirements Satisfied by RSS

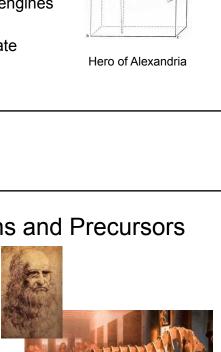

- Institute Lab
- 12-unit AUS subject worth 12 EDPs in EECS
- CI-M subject in EECS for 6-1, 6-2, or 6-3
- Department Lab in EECS for 6-1 or 6-2
- Can petition for use in lieu of 6.UAP (not guaranteed)
- Aero/Astro students can petition to use it as a PAS


Prerequisites - some mix of:


- Relevant coursework from a variety of Departments
- Familiarity with Java (or C or C++)
- Bench/shop skills (electronics, machine shop, etc.)
- Independent experience (UROPs, competitions etc.)

Grading		
 Lab quality, wikis, and briefings 	35%	
Team challenge design and proposal	10%	
 Challenge implementation 	30%	
 Debate performance Participation in lecture and lab Initial ideas and reflective report 	10% 5% 10%	
Team behavior, cooperation (qualitative factors)		
Intermediate grade summary in Week 11 (by drop date)		





Robots: Precursors and Conceptions 3000BC Anubis 1000BC Talos 100AD Early automata 1500s Leonardo da Vinci 1580s Rabbi Loew: Golem 1700s Pierre Jaquet-Droz 1738 Jacques de Vaucanson Anubis 1816 Mary Shelley 1833 Babbage's difference engines 1926 Metropolis's Maria 1961 George Devol's Unimate

3000BC	Anubis	1
1000BC	Talos	
100AD	Early automata	
1500s	Leonardo da Vinci	
1580s	Rabbi Loew: Golem	
1700s	Pierre Jaquet-Droz	
1738	Jacques de Vaucanson	
1816	Mary Shelley	
1833	Babbage's difference engines	
1926	Metropolis's Maria	
1961	George Devol's Unimate	

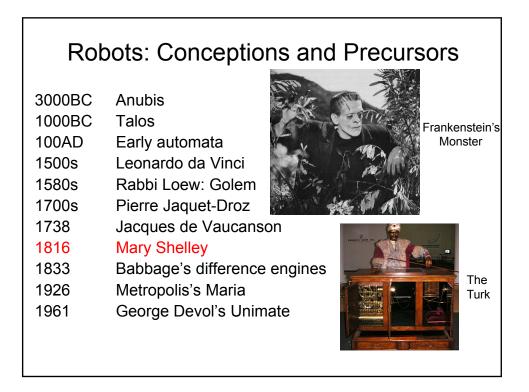
Robots: Conceptions and Precursors

3000BC	Anubis
1000BC	Talos
100AD	Early automata
1500s	Leonardo da Vinci
1580s	Rabbi Loew: Golem
1700s	Pierre Jaquet-Droz
1738	Jacques de Vaucanson
1816	Mary Shelley
1833	Babbage's difference engines
1926	Metropolis's Maria
1961	George Devol's Unimate

Developed mechanical principles of automata Built mechanical lion to entertain King Louis XII

3000BC	Anubis —
1000BC	Talos
100AD	Early automata
1500s	Leonardo da Vinci
1580s	Rabbi Loew: Golem
1700s	Pierre Jaquet-Droz
1738	Jacques de Vaucanson
1816	Mary Shelley
1833	Babbage's difference engines
1926	Metropolis's Maria
1961	George Devol's Unimate

Golem (גלמ)

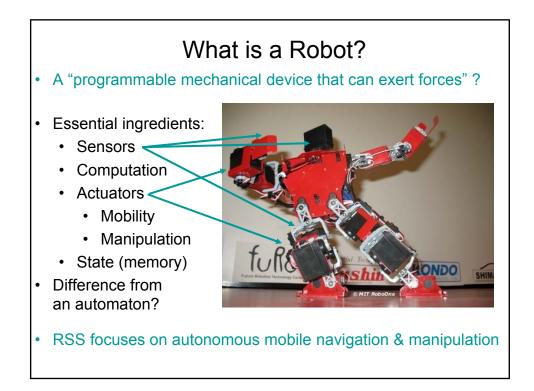

Robots: Conceptions and Precursors

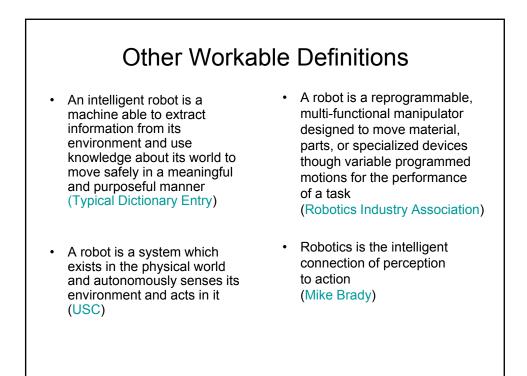
3000BC	Anubis
1000BC	Talos
100AD	Early automata
1500s	Leonardo da Vinci
1580s	Rabbi Loew: Golem
1700s	Pierre Jaquet-Droz
1738	Jacques de Vaucanson
1816	Mary Shelley
1833	Babbage's difference engines
1926	Metropolis's Maria
1961	George Devol's Unimate

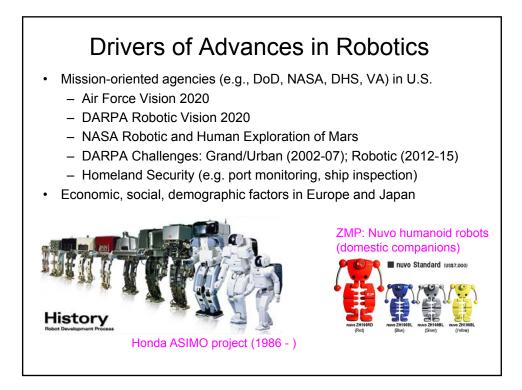
Writing automaton

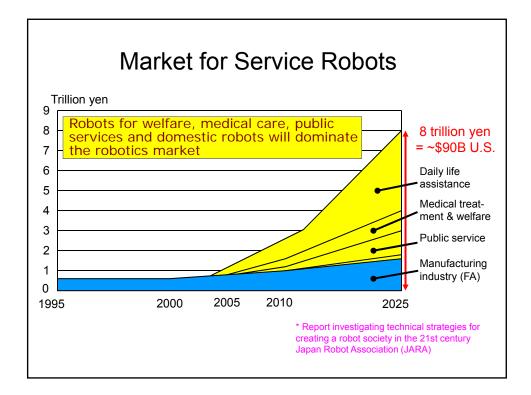
Rob	oots: Conceptions and	Precursors
3000BC 1000BC 100AD 1500s 1580s 1700s 1738 1816 1833 1926 1961	Anubis Talos Early automata Leonardo da Vinci Rabbi Loew: Golem Pierre Jaquet-Droz Jacques de Vaucanson Mary Shelley Babbage's difference engines Metropolis's Maria George Devol's Unimate	Duck automaton

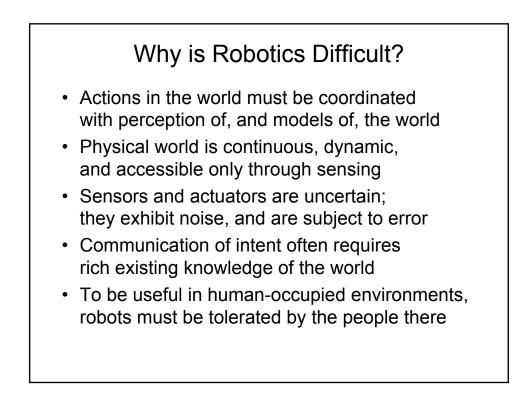
3000BC	Anubis
1000BC	Talos
100AD	Early automata
1500s	Leonardo da Vinci
1580s	Rabbi Loew: Golem
1700s	Pierre Jaquet-Droz
1738	Jacques de Vaucanson
1816	Mary Shelley
1833	Babbage's difference engines
1926	Metropolis's Maria
1961	George Devol's Unimate
	Г

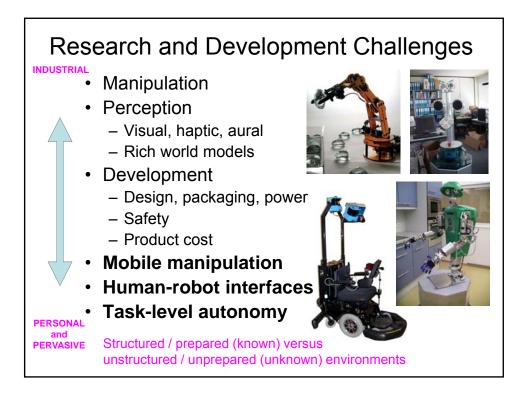

Difference engine models

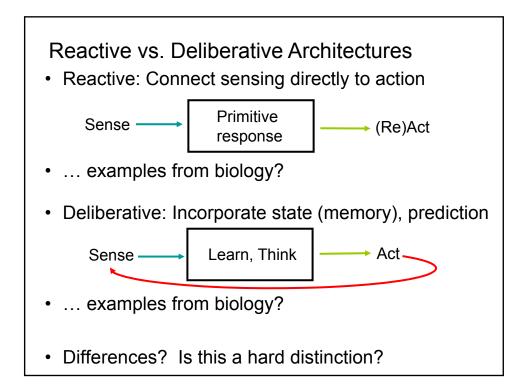

Robots: Conceptions and Precursors 3000BC Anubis 1000BC Talos 100AD Early automata 1500s Leonardo da Vinci 1580s Rabbi Loew: Golem 1700s Pierre Jaquet-Droz 1738 Jacques de Vaucanson Mary Shelley 1816 Babbage's difference engines 1833 Metropolis's Maria 1926 Maria George Devol's Unimate 1961


3000BC	Anubis	and the second	
1000BC	Talos		-
100AD	Early automata	AMER	-
1500s	Leonardo da Vinci		
1580s	Rabbi Loew: Golem		
1700s	Pierre Jaquet-Droz	-	
1738	Jacques de Vaucanson		
1816	Mary Shelley		ι
1833	Babbage's difference engi	nes	(
1926	Metropolis's Maria		
1961	George Devol's Unimate		




Unimate (note controller!)





Course Challenge

- · Build a Shelter on Mars
 - Explore a region, given an uncertain prior map
 - Gather prefabricated materials dropped from orbit
 - Transport materials to a selected building site
 - Assemble them purposefully into a wall or structure
- Eight teams, 4-5 students per team
- Challenge described in more detail on RSS web page, and will be discussed both in class and lab

What's Next

- Lab today (starting at 330pm) in 38-630
 - Introduction to μ ORC board (used in MASIab, RSS)
 - Multimeters, oscilloscopes, battery safety
 - Admission/waitlist decisions via email this evening
- Communication Forum on Friday at 1pm
 - Expectations for technical briefings, collaboration
- Individually written Challenge Design Exercise
 - Due this **Sunday evening at 1159pm**, turnin TBD
- · Lecture Monday at 1pm
 - Electric Motors
- Lab Monday at 3pm
 - Motor characterization and control