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Rapidly-exploring Random Trees 
(RRTs)

for Efficient Motion Planning

RSS Lecture 10

Monday, 10 March 2014

Prof. Seth Teller
(Thanks to Sertac Karaman for animations)

Recap of Previous Lectures:

• Recall the motion planning problem:

• We discussed:
– Cell decomposition

– Guided search using A*

– Potential fields

– Configuration space

– Probabilistic Road Maps
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Recap: PRMs [Kavraki et al. 1996]

1. Link start and goal poses into roadmap

Plan Generation (Query processing)start

goal

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap edges
- Use simple, deterministic local planner
- Discard invalid edges (how?)

1. Randomly generate robot configurations (nodes)
- Discard invalid nodes (how?)

C-obst

C-space

2. Find path from start to goal within roadmap
3. Generate motion plan for each edge used

Primitives Required:
1. Method for sampling C-Space points
2. Method for “validating” C-space points and edges

Today’s Focus
• Retain assumptions:

– Perfect map

– Perfect localization

• Incorporate additional elements:
– Unstable dynamics

• Cars, helicopters, humanoids, …
• Agile maneuvering aircraft

– High-dimensional
configuration space

– Real-time and online
• Trajectory generation & execution
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 Given: 
 Robot's dynamics

 A map of the environment
(perfect information, but discovered online)

 Robot's pose in the map

 A goal pose in the map

 Find a sequence of
 Actuation commands 

(such as steer, gas/brake, transmission)

 In real time (requires efficient algorithms)

… that drive system to the goal pose
 Problem is essential in almost all robotics 

applications irrespective of size, type of 
actuation, sensor suite, task domain, etc.  

Motion Planning Revisited

Practical Challenges
 Safety: do not collide with anything; 

ensure that system is stable; etc.

 Computational effectiveness:
problem is (provably) computa-
tionally very challenging

 Optimize: fuel, efficiency etc.
(alternative framing: not a 
gross waste of resources)

 Social acceptability (in human-occupied 
environments): motion should seem natural;
robot’s presence should not be rejected by humans
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Different Approaches
• Algebraic Planners 

• Cell Decomposition

• Potential Fields

• Sampling-Based Methods

Motion Planning Approaches
• Algebraic Planners

• Explicit (algebraic) representation of obstacles 

• Use algebraic expressions (of visibility comp-
utations, projections etc.) to find the path

• Complete (finds a solution if one exists, 
otherwise reports failure)

• Computationally very intensive – impractical

• Cell Decomposition

• Potential Fields.

• Sampling-Based Methods

1. Represent with polynomial inequalities

2. Transform inequalities to c-space

3. Solve inequalities in c-space 
to check feasibility and find a plan
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Motion Planning Approaches
• Algebraic Planners

• Cell Decomposition
• Analytic methods don’t scale well with

dimension (too many cells in high d)

• Gridding methods are only “resolution 
complete” (i.e., will find a solution only
if the grid resolution is fine enough, 
and if enough grid cells are inspected)

• Potential Fields.

• Sampling-Based Methods

Analytic subdivision

Gridded subdivision

Motion Planning Approaches
• Algebraic Planners 

• Cell Decomposition

• Potential Fields
• No completeness guarantee 

(can get stuck in local minima)

• Of intermediate efficiency; don’t 
handle dynamic environments well

• Sampling-Based Methods
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Motion Planning Approaches
• Algebraic Planners 

• Cell Decomposition

• Potential Fields

• Sampling-Based Methods
• (Randomly) construct a set of feasible 

(that is, collision-free) trajectories

• “Probabilistically complete” (if run long
enough, very likely to find a solution)

• Quite efficient; methods scale well with 
increasing dimension, # of obstacles

start

goal

C-obst

C-obst

C-obst

C-obst

C-obst

goal

Sampling Strategies
• How can we draw random samples from within c-space?

• Normalize all c-space dimensions to lie inside [0..1]

• Then, simple idea: 
1. Generate a random point in d-dimensional space

- Independently generate d random numbers between 0 and 1

- Aggregate all d numbers into a single point in c-space

2. Check whether sample point (i.e., robot pose) lies within any obstacle
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Example Sample Sets
Uniform sampling:
From a given axis, sample each coordinate with equal likelihood

Observe:
Significant local variation, but sample sets are globally consistent
(Later, we’ll see that this yields consistent performance across runs)

(200 random samples) (200 random samples)

Sampling-based Motion Planning
• Basic idea:

• Randomly sample n points from c-space

• Connect them to each other (if no collision with obstacles)

• Recall the two primitive procedures:

• Check if a point is in the obstacle-free space

• Check if a trajectory lies in the obstacle-free space

This is the Probabilistic 
Road Map (PRM) algorithm

start

goal

C-obst

C-obst

C-obst

C-obst

C-obst

goal

PRM is a multiple-query
algorithm (can reuse the
roadmap for many queries)
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Incremental Sampling-based 
Motion Planning

• Sometimes building a roadmap a priori 
might be inefficient (or even impractical)

• Assumes that all regions of c-space
will be utilized during actual motions

• Building a roadmap requires global knowledge

• But in real settings, obstacles are not known 
a priori; rather, they are discovered online

• We desire an incremental method:

• Generate motion plans for a single start, goal pose

• Expending more CPU yields better motion plans

• The Rapidly-exploring Random Tree (RRT) 
algorithm meets these requirements

RRT Data Structure, Algorithm
T = (nodes V, edges E): tree structure

– Initialized as single root vertex (the robot’s current pose)

// Sample a node x from c-space

// Find nearest node v in tree

// Extend nearest node toward sample

// If extension is collision-free 

// Add new node and edge to tree

RRT
root

;
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Digression: Voronoi Diagrams
Given n sites in d dimensions,

the Voronoi diagram of the 

sites is a partition of Rd into

regions, one region per site,

such that all points in the 

interior of each region lie 

closer to that region’s site 

than to any other site

(AKA Dirichlet tesselations, Wigner-Seitz 

regions, Thiessen polygons, Brillouin zones, …)

Rapidly-exploring Random Trees:
Clearly random! Why rapidly-exploring?

• RRTs tend to grow toward unexplored portions of the state-space 
• Unexplored regions are (in some sense) more likely to be sampled

• This is called a Voronoi bias

Main advantage of RRT: Samples “grow” 
tree toward unexplored regions of c-space!

The unexplored areas of c-space tend to
coincide with the larger Voronoi regions

(Uniform) samples will tend to fall into
relatively larger Voronoi regions

For an RRT at a given iteration, some nodes
are associated with large Voronoi regions of
c-space, some with smaller Voronoi regions 

Thus unexplored regions will tend to shrink!
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Rapidly-exploring Random Trees
in simulation

Initial pose

Goal pose region

The tree

Obstacles

Best path in the 
tree (identified
through search)

Rapidly-exploring Random Trees
in simulation

Movie shows the RRT exploring empty c-space

Goal pose region
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Rapidly-exploring Random Trees
in simulation

Exploration amid obstacles, narrow passages:

Performance of 
Sampling-based Methods

• Why do the PRM and RRT methods work so well?

• Probabilistic Completeness:
– The probability that the RRT will find a path approaches 1 as 

the number of samples increases — if a feasible path exists.

– The approach rate is exponential — if the environment has 
good “visibility’’ properties

• ϵ-goodness:
– A point is ϵ-good if it “sees” at least 

an ϵ fraction of the obstacle-free space

– An environment is ϵ-good if all 
freespace points in it are ϵ-good

Good performance of PRMs and RRTs has been tied to the fact that, in practice, most
applications feature environments with good visibility guarantees (Latombe et al., IJRR ’06). 
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Example: Unmanned Driving
 Tree of trajectories is grown by sampling 

configurations randomly

 Rapidly explores several configurations 
that the robot can reach.
 Many test trajectories generated

(tens of thousands per second)
 Safety of any trajectory is “guaranteed”…

 … as of instantaneous world state
at the time of trajectory generation

 Choose best one that reaches the goal, e.g., 
 Maximizes minimum distance to obstacles
 Minimizes total path length

 Supports dynamic replanning; if current 
trajectory becomes infeasible: 
 Choose another one that is feasible
 If none remain, then E-stop

Obstacle
infeasible

Road 
infeasible

Vehicle

Goal pose

Lane divider 
undesirable

Real-world Implementation
A few details:
 CPU limitations and sampling method

 Dynamical feasibility constraints

 Grid map with local obstacle awareness

 Stop nodes for safety

Legend for images, videos you’ll see next:
Instantaneous 
vehicle pose

Goal pose

Obstacle

High-cost regions

Reaching, low cost

Reaching, high cost

Non-reaching
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RRT at work: Urban Challenge

Successful Parking Maneuver
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RRT at work: Autonomous Forklift

Summary

• The Rapidly-exploring Random Tree (RRT) 
algorithm

• Discussed challenges for motion planning 
methods in real-world applications

• Intuition behind good performance of 
sampling-based methods

• Two applications: 
– Urban Challenge vehicle, Agile Robotics forklift


