

5

Novel elements:

- Urban road network
- Moving traffic
- Human and robotic!
- No course inspection
- 60 miles in 6 hours
- Scored by speed, safety
- $\$ 3.5 \mathrm{M}$ prize pool
- 89 entering teams
- Program goals

Source: DARPA Urban Challenge
Participants Briefing, May 2006

- Safe (collision-free, polite) driving at up to 30 mph
- Capable (turns, stops, intersections, merging, parking, ...)
- Robust (blocked roads, erratic drivers,
sparse waypoints, GPS degradation and outages, ...)
- Military interest in autonomous land vehicles
- Congressional mandate (H.R. 4205/P.L. 106-398, Oct. 2000): "one third of operational ,"ground combat vehicles to be unmanned by 2015
- DGC 1: March 2004
- 142 miles in 10 hours, $\$ 1 \mathrm{M}$ prize
- 106 entering teams; no finishers
- Dense, pre-mapped GPS corridor
- No moving obstacles (static world)
- One vehicle at a time
- Whenever two robots came close, one was manually paused
- DGC 2: October 2005
- 132 miles in 10 hours, $\$ 2 \mathrm{M}$ prize
- Dense, pre-mapped graded roadway
- One vehicle at a time, as in DGC 1
- 195 teams, 5 finishers

E
cs

Why tackle this problem?

- Fatalities and injuries from driving accidents
- Tens of thousands of fatalities per year in U.S.
- Hundreds of thousands of injuries annually
- Productivity lost to commuting, travel
- Billions of person-hours per year "spent" driving
- Energy inefficiency of braking and idling
- Could do much better with cooperating vehicles
- Mandate from U.S. Congress
$-1 / 3$ of military ground vehicles unmanned by 2015
- Sheer appeal of designing a robotic vehicle that exhibits human-level driving capability!

- USB stick with two data files:
- RNDF: Road Network Description File
- Provided 48 hours ahead
- Topology of road network
- "Sparse" GPS waypoints
- Geometry of intersection, parking zone boundaries

Intersection not called out in RNDF

- MDF: Mission Description File
- Provided 5 minutes ahead

Sparse waypoints

- List of RNDF waypoints to be traversed by autonomous car on curved road it
cs
Related Work
- Partial Autonomous Driving Systems
- Limited domain (highway lane; traffic-free road)
- Require human to: stage control handoff, monitor operation, and take over in emergency situations

- Munich's VaMoRs (1985-2004), VAMP (1993-2004); CMU's NAVLAB (1985); Penn (Southall \& Taylor 2001)
- Assistive Driving Technologies
- Limited duty cycle (cruising, emergencies, staged parking) and actuation (e.g. none, or brakes only)
- Require human handoff and resumption of control
- Automakers' ABS, cruise control, self-parking systems
- Lane departure warnings (Mobileye, Iteris, ANU)
!
cs
- Human-level urban driving not achievable with existing algorithms / systems as of 2006
- Key issues: uncertainty; sensing/CPU resources; safety
- Example: if vehicle is unsure where the road is, and/or where it is with respect to the road, identifying a safe, appropriate traffic behavior (at speed!) is very difficult
- Strategy
- Technical footprint for success covers many disciplines \rightarrow interdisciplinary approach integrating EECS \& MechE
- Spiral design approach \rightarrow figure out how to solve the problem while designing the system at the same time


```
!
```


Compressed Timeline

- Bring up rapid prototype vehicle (Ford Escape) summer/fall '06
- Gain experience with sensors, DBW dynamics, coding, configuration
- Bring up competition vehicle (LandRover LR3) spring ' 07 (LandRover LR3) spring 07
- Develop mature algorithms, tune for qualifying rounds and final event
- Compete in Challenge, fall 2007

TrackA Announced (10/2) Ford Escape LR3
Program
Program
Announced (5/1)
Participants
Conference $(5 / 20)$ $\begin{gathered}\text { Site } \text { Visit } \\ (10 / 27)\end{gathered}$

61
$c s$

5
 Design Strategy

- Sensor-rich, CPU- and I/O-intensive architecture
- Many sensors to interpret surroundings "live"
- Intensive use of live and logged data visualization
- Many resources, to avoid premature optimization
- Redundancies:
- Sensor type and spatial coverage
- Closed-loop multi-level planning and control
- Computation failover at process level
- Firmware-mediated actuator control
- Failsafe behaviors
- If no progress, relax perceived constraints
$1!$
$c s$
c

5

- Linux blade cluster with two fast interconnection networks
- 10 blades each with 2.33 GHz quad-core processor $\rightarrow 40$ cores
- Approximately 80 driving-related processes steady-state
- Many sensors
- Applanix IMU/GPS
- Hi-res odometry
- 12 SICK Lidars
- Velodyne (~64 Lidars)
- 15 automotive radars
- 5 video cameras
- Roof-mounted AC
- Total power consumption was
- Internal gas generator

5

Autonomous Driving Test Site

- South Weymouth Naval Air Station
- About 40 min. from MIT off 35
- Usually $\$ 10 \mathrm{~K} /$ day; free to our team when no paying customer
- Large tarmac area

- Can create arbitrary (flat) road networks
- Environmentally sensitive:
- Obstacles: traffic cones
- Lane markings: only flour
- Traffic: team members' cars

나눈
Fine-Grained Prior Map Data

- Every other team, to our knowledge, manually "densified" the provided RNDF (map) data during the 48 -hour pre-competition period
- Used high-resolution geo-referenced aerial imagery
- Added precise position and / or curvature samples at dense intervals (every few meters) along roads
- Rationales we heard for this approach:
- "All the other teams are densifying" (not correct)
- Such "data infrastructure" will be widely available soon via commercial efforts (e.g. NavTeq, Google)
- DARPA implicitly blessed this strategy
- 48-hour RNDF distribution; no surprise road segments : $:$!

Lessons Learned
- About DARPA's expectations
- About the autonomous driving task
- About differing long-term approaches

More info: http://dgc.mit.edu

- Respectable rookie showing
- First time in DGC for MIT team
- Fourth place overall
- One of only 6 teams (of 89 initially entering) to complete UCE course
- Completed all NQE missions without manual annotation of provided RNDF

